Nature General Future increase in extreme El Niño supported by past glacial changes

Future increase in extreme El Niño supported by past glacial changes

Future increase in extreme El Niño supported by past glacial changes post thumbnail image


  • McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McPhaden, M. J., Santoso, A. & Cai, W. in El Niño Southern Oscillation in a Changing Climate, Geophysical Monographs 1–19 (eds McPhaden, M. J. et al.) (Wiley, 2020).

  • Cobb, K. M. et al. Highly variable El Nino–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature 515, 550–553 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z., Liu, Z., Zhu, J. & Cobb, K. M. A review of Paleo El Niño-Southern Oscillation. Atmosphere 9, 130 (2018).

    Article 
    ADS 

    Google Scholar
     

  • McPhaden, M. J. Genesis and evolution of the 1997-98 El Niño. Science 283, 950–954 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santoso, A., Mcphaden, M. J. & Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 55, 1079–1129 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Glynn, P. W. El Niño-Southern Oscillation 1982-1983: nearshore population, community, and ecosystem responses. Annu. Rev. Ecol. Evol. Syst. 19, 309–346 (1988).

    Article 

    Google Scholar
     

  • Thirumalai, K., DiNezio, P. N., Okumura, Y. & Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 8, 15531 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 5, 111–116 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Emile-Geay, J. & Tingley, M. Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies. Clim. Past 12, 31–50 (2016).

    Article 

    Google Scholar
     

  • Ford, H. L., Ravelo, A. C. & Polissar, P. J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum. Science 347, 255–258 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadekov, A. Y. et al. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state. Nat. Commun. 4, 2692 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Leduc, G., Vidal, L., Cartapanis, O. & Bard, E. Modes of eastern equatorial Pacific thermocline variability: implications for ENSO dynamics over the last glacial period. Paleoceanography 24, PA3202 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Rustic, G. T., Polissar, P. J., Ravelo, A. C. & White, S. M. Modulation of late Pleistocene ENSO strength by the tropical Pacific thermocline. Nat. Commun. 11, 5377 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiNezio, P. N., Deser, C., Okumura, Y. & Karspeck, A. Predictability of 2-year La Niña events in a coupled general circulation model. Clim. Dyn. 49, 4237–4261 (2017).

    Article 

    Google Scholar
     

  • Zhu, J. et al. Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model. Geophys. Res. Lett. 44, 6984–6992 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Koutavas, A. & Joanides, S. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, PA4208 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Thirumalai, K., Partin, J. W., Jackson, C. S. & Quinn, T. M. Statistical constraints on El Niño Southern Oscillation reconstructions using individual foraminifera: a sensitivity analysis. Paleoceanography 28, 401–412 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Emile-Geay, J. et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci. 9, 168–173 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Carré, M. et al. High-resolution marine data and transient simulations support orbital forcing of ENSO amplitude since the mid-Holocene. Quat. Sci. Rev. 268, 107125 (2021).

    Article 

    Google Scholar
     

  • Lawman, A. E. et al. Unraveling forced responses of extreme El Niño variability over the Holocene. Sci. Adv. 8, eabm4313 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Glaubke, R. H. et al. An inconsistent ENSO response to Northern Hemisphere stadials over the last deglaciation. Geophys. Res. Lett. 51, e2023GL107634 (2024).

    Article 

    Google Scholar
     

  • Lakhani, K. Q., Lynch-Stieglitz, J. & Monteagudo, M. M. Constraining calcification habitat using oxygen isotope measurements in tropical planktonic foraminiferal tests from surface sediments. Mar. Micropaleontol. 170, 102074 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lynch-Stieglitz, J. et al. Glacial-interglacial changes in central tropical Pacific surface seawater property gradients. Paleoceanography 30, 423–438 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Jin, F. F. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern Oscillation. Science 274, 76–78 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Puy, M., Vialard, J., Lengaigne, M. & Guilyardi, E. Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Clim. Dyn. 46, 2155–2178 (2015).

    Article 

    Google Scholar
     

  • Xue, Y. & Kumar, A. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci. Chn. Earth Sci. 60, 1572–1588 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N., Gramer, L. J., Johns, W. E., Meinen, C. S. & Baringer, M. O. Observed interannual variability of the Florida current: wind forcing and the North Atlantic Oscillation. J. Phys. Oceanogr. 39, 721–736 (2009).

    Article 
    ADS 

    Google Scholar
     

  • An, S.-I. & Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Clim. 17, 2399–2412 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Callahan, C. W. et al. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Change 11, 752–757 (2021).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim. 25, 7399–7420 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Heede, U.K. & Fedorov, A. V. Towards understanding the robust strengthening of ENSO and more frequent extreme El Niño events in CMIP6 global warming simulations. Clim. Dyn. 61, 3047–3060 (2023).


    Google Scholar
     

  • Brown, J. R. et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Clim. Past 16, 1777–1805 (2020).

    Article 

    Google Scholar
     

  • Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Change 11, 27–32 (2021).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. The response of the Walker circulation to Last Glacial Maximum forcing: implications for detection in proxies. Paleoceanography 26, PA3217 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ford, H. L., McChesney, C. L., Hertzberg, J. E. & McManus, J. F. A deep eastern equatorial Pacific thermocline during the Last Glacial Maximum. Geophys. Res. Lett. 45, 11,806–11,816 (2018).

    Article 

    Google Scholar
     

  • Andreasen, D. J. & Ravelo, A. C. Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial Maximum. Paleoceanography 12, 395–413 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Hollstein, M. et al. Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110,000 years: forcing mechanisms and implications for the glacial Walker circulation. Quat. Sci. Rev. 201, 429–445 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Monteagudo, M. M., Lynch‐Stieglitz, J., Marchitto, T. M. & Schmidt, M. W. Central equatorial Pacific cooling during the last glacial maximum. Geophys. Res. Lett. 48, e2020GL088592 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper, V. T. et al. Last Glacial Maximum pattern effects reduce climate sensitivity estimates. Sci. Adv. 10, eadk9461 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McPhaden, M. J. & Yu, X. Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett. 26, 2961–2964 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Kessler, W. S. Is ENSO a cycle or a series of events? Geophys. Res. Lett. 29, 40-1–40-4 (2002).

    Article 

    Google Scholar
     

  • DiNezio, P. N. & Deser, C. Nonlinear controls on the persistence of La Niña. J. Clim. 27, 7335–7355 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Article 
    ADS 

    Google Scholar
     

  • L’Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. Change 3, 571–576 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto‐Bliesner, B. L. Pliocene Warmth Consistent With Greenhouse Gas Forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Glaubke, R. H., Thirumalai, K., Schmidt, M. W. & Hertzberg, J. E. Discerning Changes in High-Frequency Climate Variability Using Geochemical Populations of Individual Foraminifera. Paleoceanogr. Paleoclimatol. 36, e2020PA004065 (2021).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, eaat9658 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537–563 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE‐6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Brady, E. C., Otto-Bliesner, B. L., Kay, J. E. & Rosenbloom, N. Sensitivity to glacial forcing in the CCSM4. J. Clim. 26, 1901–1925 (2013).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanography 31, 866–894 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Costa, K. M. et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age. Nature 529, 519–522 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thirumalai, K., Cohen, A. S. & Taylor, D. Hydrologic controls on individual ostracode stable isotopes in a desert lake: a modern baseline for Lake Turkana. Geochem. Geophys. Geosyst. 24, e2022GC010790 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Montávez, N. B., Thirumalai, K. & Marino, G. Shell reworking impacts on climate variability reconstructions using individual foraminiferal analyses. Paleoceanogr. Paleoclimatol. 39, e2023PA004663 (2024).

    Article 

    Google Scholar
     

  • Thirumalai, K. & Maupin, C. R. Chasing interannual marine paleovariability. Paleoceanogr. Paleoclimatol. 38, e2023PA004723 (2023).

    Article 
    ADS 

    Google Scholar
     

  • White, S. M., Ravelo, A. C. & Polissar, P. J. Dampened El Niño in the early and mid-Holocene due to insolation-forced warming/deepening of the thermocline. Geophys. Res. Lett. 45, 316–326 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hollstein, M. et al. Stable oxygen isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of the Western Pacific Warm Pool: implications for thermocline reconstructions. Paleoceanography 32, 1174–1194 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ray, S., Wittenberg, A. T., Griffies, S. M. & Zeng, F. Understanding the equatorial Pacific cold tongue time-mean heat budget. Part I: diagnostic framework. J. Clim. 31, 9965–9985 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Deser, C. et al. ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Clim. 25, 2622–2651 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years. Nat. Commun. 13, 5457 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber‐Mg/Ca in the equatorial Pacific. Paleoceanography 29, 680–696 (2014).

    Article 
    ADS 

    Google Scholar
     

  • MARGO Project Members. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2, 127–132 (2009).

  • Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L. & Thirumalai, K. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanogr. Paleoclimatol. 34, 2005–2030 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sagawa, T., Yokoyama, Y., Ikehara, M. & Kuwae, M. Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 346–347, 120–129 (2012).

    Article 

    Google Scholar
     

  • Leech, P. J., Lynch-Stieglitz, J. & Zhang, R. Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum. Earth Planet. Sci. Lett. 363, 133–143 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thirumalai, K. Holocene and glacial individual foraminiferal analyses (IFA) of stable isotopes in Globigerinoides ruber tests from Line Islands sediment cores (central equatorial Pacific) (v.1). Zenodo https://doi.org/10.5281/zenodo.12744812 (2024).

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference 56–61 (SciPy, 2010).

  • Oliphant, T. E. Guide to NumPy (CreateSpace, 2006).

  • Michael, W. A. et al. Seaborn v.0.9.0. Seaborn https://seaborn.pydata.org/whatsnew/v0.9.0.html (2018).

  • Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5, 10 (2017).

    Article 

    Google Scholar
     

  • Office, M. Cartopy: a cartographic python library with a Matplotlib interface. Cartopy http://scitools.org.uk/cartopy (2010–2017).

  • Jones, E., Oliphnat, T. & Peterson, P. SciPy: open source scientific tools for Python. SciPy http://www.scipy.org (2001).

  • DiNezio, P. CESM1.2 simulations of Tropical Pacific heat budget and other properties across Pleistocene and Holocene climatic boundary intervals. Zenodo https://doi.org/10.5281/zenodo.12832365 (2024).

  • Thirumalai, K. & DiNezio, P. (2024). Codes and data files for analysis presented in Thirumalai & DiNezio et al. (2024, Nature). Zenodo https://doi.org/10.5281/zenodo.12849829 (2024).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post