Balanoff, A. & Bever, G. in Evolutionary Neuroscience (ed. Kaas, J. H.) 29–49 (Elsevier, 2020).
Chiappe, L. M. Glorified Dinosaurs: The Origin and Early Evolution of Birds (Wiley, 2007).
O’Connor, J. K. & Chiappe, L. M. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J. Syst. Palaeontol. 9, 135–157 (2011).
Chiappe, L. M. & Qingjin, M. Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs (JHU, 2016).
Carvalho, I. S. et al. A Mesozoic bird from Gondwana preserving feathers. Nat. Commun. 6, 7141 (2015).
Carvalho, I. S. et al. A new genus and species of enantiornithine bird from the Early Cretaceous of Brazil. Braz. J. Geol. 45, 161–171 (2015).
Balanoff, A. M., Bever, G. S., Rowe, T. B. & Norell, M. A. Evolutionary origins of the avian brain. Nature 501, 93–96 (2013).
Walsh, S. A., Milner, A. C. & Bourdon, E. A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia. J. Anat. 229, 215–227 (2016).
Field, D. J. et al. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–100 (2018).
Ksepka, D. T. et al. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026–2036 (2020).
Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021).
Chiappe, L. M., Navalón, G., Martinelli, A. G., Nava, W. & Field, D. J. Fossil basicranium clarifies the origin of the avian central nervous system and inner ear. Proc. R. Soc. B 289, 20221398 (2022).
Chiappe, L. M. Enantiornithine (Aves) Tarsometatarsi From the Cretaceous Lecho Formation of Northwestern Argentina (American Museum of Natural History, 1993).
Castro, M. C. et al. A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group. R. Soc. Open Sci. 5, 180482 (2018).
Menegazzo, M. C., Catuneanu, O. & Chang, H. K. The South American retroarc foreland system: the development of the Bauru Basin in the back-bulge province. Mar. Petrol. Geol. 73, 131–156 (2016).
Arai, M. & Dias-Brito, D. Supersequência Bauru (Cretáceo da Bacia do Paraná): revisão estratigráfica com base em dados paleontológicos recentes. Derbyana https://doi.org/10.14295/derb.v44.800 (2023).
Arai, M. & Fernandes, L. A. Lower Campanian palynoflora from the Araçatuba Formation (Bauru Group), Southeastern Brazil. Cretac. Res. 150, 105586 (2023).
Chiappe, L. M. et al. New Bohaiornis-like bird from the Early Cretaceous of China: enantiornithine interrelationships and flight performance. PeerJ 7, e7846 (2019).
Brocklehurst, N. & Field, D. J. Macroevolutionary dynamics of dentition in Mesozoic birds reveal no long-term selection towards tooth loss. Iscience 24, 102243 (2021).
Sereno, P. C. A rationale for phylogenetic definitions, with application to the higher-level taxonomy of Dinosauria. N. Jb. Geo. Palaont. Abh. 210, 41–83 (1998).
Benito, J. et al. Forty new specimens of Ichthyornis provide unprecedented insight into the postcranial morphology of crownward stem group birds. PeerJ 10, e13919 (2022).
Wang, M. et al. The oldest record of Ornithuromorpha from the Early Cretaceous of China. Nat. Commun. 6, 6987 (2015).
Chiappe, L. M., Di, L., Serrano, F. J., Yuguang, Z. & Meng, Q. Anatomy and flight performance of the early enantiornithine bird Protopteryx fengningensis: information from new specimens of the Early Cretaceous Huajiying Formation of China. Anat. Rec. 303, 716–731 (2020).
Wang, M. & Zhou, Z. A new enantiornithine (Aves: Ornithothoraces) with completely fused premaxillae from the Early Cretaceous of China. J. Syst. Palaeontol. 17, 1299–1312 (2019).
Wu, Y.-H., Chiappe, L. M., Bottjer, D. J., Nava, W. & Martinelli, A. G. Dental replacement in Mesozoic birds: evidence from newly discovered Brazilian enantiornithines. Sci. Rep. 11, 19349 (2021).
Xu, L. et al. A new, remarkably preserved, enantiornithine bird from the Upper Cretaceous Qiupa Formation of Henan (central China) and convergent evolution between enantiornithines and modern birds. Geol. Mag. 158, 2087–2094 (2021).
Wang, M., Zhou, Z.-H., O’Connor, J. K. & Zelenkov, N. V. A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species. Vert. PalAs. 52, 31–76 (2014).
Wang, X. et al. New species of enantiornithes (Aves: Ornithothoraces) from the Qiaotou Formation in northern Hebei, China. Acta Geol. Sin. Engl.84, 247–256 (2010).
Zhou, Z., Clarke, J. & Zhang, F. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. J. Anat. 212, 565–577 (2008).
Sanz, J. L. et al. A nestling bird from the Lower Cretaceous of Spain: implications for avian skull and neck evolution. Science 276, 1543–1546 (1997).
Wang, M., Stidham, T. A., Li, Z., Xu, X. & Zhou, Z. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution. Nat. Commun. 12, 3890 (2021).
Chiappe, L. M., Norell, M. & Clark, J. A New Skull of Gobipteryx minuta (Aves: Enantiornithes) From the Cretaceous of the Gobi Desert (American Museum of Natural History, 2001).
Witmer, L. M. The craniofacial air sac system of Mesozoic birds (Aves). Zool. J. Linn. Soc. 100, 327–378 (1990).
Hu, H., O’Connor, J. K., Wang, M., Wroe, S. & McDonald, P. G. New anatomical information on the bohaiornithid Longusunguis and the presence of a plesiomorphic diapsid skull in Enantiornithes. J. Syst. Palaeont. 18, 1481–1495 (2020).
Wang, M. & Hu, H. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. Anat. Rec. 300, 62–75 (2017).
Wang, M., Stidham, T. A., O’Connor, J. K. & Zhou, Z. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife 11, e81337 (2022).
Zhang, Y. et al. New information on the anatomy of the Chinese Early Cretaceous Bohaiornithidae (Aves: Enantiornithes) from a subadult specimen of Zhouornis hani. PeerJ 2, e407 (2014).
O’Connor, J. K. et al. A new enantiornithine from the Yixian Formation with the first recognized avian enamel specialization. J. Vert. Paleontol. 33, 1–12 (2013).
Chiappe, L. M., Ji, S.-A., Ji, Q. & Norell, M. A. Anatomy and Systematics of the Confuciusornithidae (Theropoda, Aves) From the Late Mesozoic of Northeastern China (American Museum of Natural History, 1999).
Hu, H. et al. Cranial osteology and palaeobiology of the Early Cretaceous bird Jeholornis prima (Aves: Jeholornithiformes). Zool. J. Linn. Soc. 198, 93–112 (2023).
Ostrom, J. H. A new theropod dinosaur from the Lower Cretaceous of Montana. Postilla 128, 1–17 (1969).
Tsuihiji, T. et al. An exquisitely preserved troodontid theropod with new information on the palatal structure from the Upper Cretaceous of Mongolia. Naturwissenschaften 101, 131–142 (2014).
Benito, J., Kuo, P.-C., Widrig, K. E., Jagt, J. W. & Field, D. J. Cretaceous ornithurine supports a neognathous crown bird ancestor. Nature 612, 100–105 (2022).
Chiappe, L. M. Mesozoic Birds (Wiley Online Library, 2002).
Bell, A. & Chiappe, L. M. Anatomy of Parahesperornis: evolutionary mosaicism in the Cretaceous Hesperornithiformes (Aves). Life 10, 62 (2020).
Bühler, P., Martin, L. D. & Witmer, L. M. Cranial kinesis in the Late Cretaceous birds Hesperornis and Parahesperornis. Auk 105, 111–122 (1988).
Kuo, P. C., Benson, R. B. & Field, D. J. The influence of fossils in macroevolutionary analyses of 3D geometric morphometric data: a case study of galloanseran quadrates. J. Morphol. 284, e21594 (2023).
Marugán‐Lobón, J., Nebreda, S. M., Navalón, G. & Benson, R. B. Beyond the beak: brain size and allometry in avian craniofacial evolution. J. Anat. 240, 197–209 (2022).
Alonso, P. D., Milner, A. C., Ketcham, R. A., Cookson, M. J. & Rowe, T. B. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430, 666–669 (2004).
Balanoff, A. M., Norell, M. A., Hogan, A. V. & Bever, G. S. The endocranial cavity of oviraptorosaur dinosaurs and the increasingly complex, deep history of the avian brain. Brain Behav. Evol. 91, 125–135 (2018).
Yu, C., Watanabe, A., Qin, Z., Logan King, J., Witmer, L. M., Ma, Q. & Xu, X. Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda). Comm. Biol. 7, 168 (2024).
Early, C. M., Iwaniuk, A. N., Ridgely, R. C. & Witmer, L. M. Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds. J. Anat. 237, 1162–1176 (2020).
Fabbri, M. et al. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat. Ecol. Evol. 1, 1543 (2017).
Iwaniuk, A. N., Hurd, P. L. & Wylie, D. R. Comparative morphology of the avian cerebellum: I. Degree of foliation. Brain Behav. Evol. 68, 45–62 (2006).
Senglaub, K. Das Kleinhirn der Vögel in Beziehung zu phylogenetischer Stellung, Lebensweise und Körpergrösse. Z. Wiss. Zool. 169, 1–63 (1963).
Watanabe, A., Balanoff, A. M., Gignac, P. M., Gold, M. E. L. & Norell, M. A. Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 10, e68809 (2021).
Widrig, K. E., Navalón, G. & Field, D. J. Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system. J. Morphol. 285, e21710 (2024).
Hanson, M., Hoffman, E. A., Norell, M. A. & Bhullar, B.-A. S. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 372, 601–609 (2021).
Beyrand, V. et al. Multiphase progenetic development shaped the brain of flying archosaurs. Sci. Rep. 9, 10807 (2019).
Bhullar, B.-A. S. et al. Birds have paedomorphic dinosaur skulls. Nature 487, 223–226 (2012).
Griffin, C. T. et al. The developing bird pelvis passes through ancestral dinosaurian conditions. Nature 608, 346–352 (2022).
Herbst, E. C., Meade, L. E., Lautenschlager, S., Fioritti, N. & Scheyer, T. M. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender. R. Soc. Open Sci. 9, 220519 (2022).
Bjarnason, A. & Benson, R. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM 7, e125 (2021).
Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306–311 (2022).
Wiley, D. Landmark Editor 3.0 (Institute for Data Analysis and Visualization, 2006).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Bookstein, F. L. in Image Fusion and Shape Variability Techniques (eds Mardia, K. V. et al.) 59–70 (Leeds Univ. Press, 1996).
Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. geomorph v4. 0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).
Bookstein, F. L. & Green, W. D. in Mathematical Methods in Medical Imaging II (eds Wilson, J. N. & Wilson, D. C.) 14–28 (SPIE, 1993).
Schlager, S. in Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Elsevier, 2017).
Felice, R. rnfelice/hot.dots: hot.dots v0.1.0. Zenodo https://doi.org/10.5281/zenodo.3929193 (2020).
Goloboff, P. A. & Morales, M. E. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 39, 144–153 (2023).
Slowinski, J. B. “Unordered” versus “ordered” characters. Syst. Biol. 42, 155–165 (1993).
Chiappe, L., Navalón, G. & Field, D. J. Cretaceous bird from Brazil fills key gap in the evolution of the avian skull and brain. Zenodo https://doi.org/10.5281/zenodo.10696014 (2024).