Nature General Cretaceous bird from Brazil informs the evolution of the avian skull and brain

Cretaceous bird from Brazil informs the evolution of the avian skull and brain

Cretaceous bird from Brazil informs the evolution of the avian skull and brain post thumbnail image


  • Balanoff, A. & Bever, G. in Evolutionary Neuroscience (ed. Kaas, J. H.) 29–49 (Elsevier, 2020).

  • Chiappe, L. M. Glorified Dinosaurs: The Origin and Early Evolution of Birds (Wiley, 2007).

  • O’Connor, J. K. & Chiappe, L. M. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J. Syst. Palaeontol. 9, 135–157 (2011).

    Article 

    Google Scholar
     

  • Chiappe, L. M. & Qingjin, M. Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs (JHU, 2016).

  • Carvalho, I. S. et al. A Mesozoic bird from Gondwana preserving feathers. Nat. Commun. 6, 7141 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Carvalho, I. S. et al. A new genus and species of enantiornithine bird from the Early Cretaceous of Brazil. Braz. J. Geol. 45, 161–171 (2015).

    Article 

    Google Scholar
     

  • Balanoff, A. M., Bever, G. S., Rowe, T. B. & Norell, M. A. Evolutionary origins of the avian brain. Nature 501, 93–96 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Walsh, S. A., Milner, A. C. & Bourdon, E. A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia. J. Anat. 229, 215–227 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Field, D. J. et al. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–100 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ksepka, D. T. et al. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026–2036 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiappe, L. M., Navalón, G., Martinelli, A. G., Nava, W. & Field, D. J. Fossil basicranium clarifies the origin of the avian central nervous system and inner ear. Proc. R. Soc. B 289, 20221398 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiappe, L. M. Enantiornithine (Aves) Tarsometatarsi From the Cretaceous Lecho Formation of Northwestern Argentina (American Museum of Natural History, 1993).

  • Castro, M. C. et al. A Late Cretaceous mammal from Brazil and the first radioisotopic age for the Bauru Group. R. Soc. Open Sci. 5, 180482 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menegazzo, M. C., Catuneanu, O. & Chang, H. K. The South American retroarc foreland system: the development of the Bauru Basin in the back-bulge province. Mar. Petrol. Geol. 73, 131–156 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Arai, M. & Dias-Brito, D. Supersequência Bauru (Cretáceo da Bacia do Paraná): revisão estratigráfica com base em dados paleontológicos recentes. Derbyana https://doi.org/10.14295/derb.v44.800 (2023).

  • Arai, M. & Fernandes, L. A. Lower Campanian palynoflora from the Araçatuba Formation (Bauru Group), Southeastern Brazil. Cretac. Res. 150, 105586 (2023).

    Article 

    Google Scholar
     

  • Chiappe, L. M. et al. New Bohaiornis-like bird from the Early Cretaceous of China: enantiornithine interrelationships and flight performance. PeerJ 7, e7846 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brocklehurst, N. & Field, D. J. Macroevolutionary dynamics of dentition in Mesozoic birds reveal no long-term selection towards tooth loss. Iscience 24, 102243 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sereno, P. C. A rationale for phylogenetic definitions, with application to the higher-level taxonomy of Dinosauria. N. Jb. Geo. Palaont. Abh. 210, 41–83 (1998).

  • Benito, J. et al. Forty new specimens of Ichthyornis provide unprecedented insight into the postcranial morphology of crownward stem group birds. PeerJ 10, e13919 (2022).

  • Wang, M. et al. The oldest record of Ornithuromorpha from the Early Cretaceous of China. Nat. Commun. 6, 6987 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiappe, L. M., Di, L., Serrano, F. J., Yuguang, Z. & Meng, Q. Anatomy and flight performance of the early enantiornithine bird Protopteryx fengningensis: information from new specimens of the Early Cretaceous Huajiying Formation of China. Anat. Rec. 303, 716–731 (2020).

    Article 

    Google Scholar
     

  • Wang, M. & Zhou, Z. A new enantiornithine (Aves: Ornithothoraces) with completely fused premaxillae from the Early Cretaceous of China. J. Syst. Palaeontol. 17, 1299–1312 (2019).

    Article 

    Google Scholar
     

  • Wu, Y.-H., Chiappe, L. M., Bottjer, D. J., Nava, W. & Martinelli, A. G. Dental replacement in Mesozoic birds: evidence from newly discovered Brazilian enantiornithines. Sci. Rep. 11, 19349 (2021).

  • Xu, L. et al. A new, remarkably preserved, enantiornithine bird from the Upper Cretaceous Qiupa Formation of Henan (central China) and convergent evolution between enantiornithines and modern birds. Geol. Mag. 158, 2087–2094 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, M., Zhou, Z.-H., O’Connor, J. K. & Zelenkov, N. V. A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species. Vert. PalAs. 52, 31–76 (2014).


    Google Scholar
     

  • Wang, X. et al. New species of enantiornithes (Aves: Ornithothoraces) from the Qiaotou Formation in northern Hebei, China. Acta Geol. Sin. Engl.84, 247–256 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Z., Clarke, J. & Zhang, F. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. J. Anat. 212, 565–577 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanz, J. L. et al. A nestling bird from the Lower Cretaceous of Spain: implications for avian skull and neck evolution. Science 276, 1543–1546 (1997).

    Article 

    Google Scholar
     

  • Wang, M., Stidham, T. A., Li, Z., Xu, X. & Zhou, Z. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution. Nat. Commun. 12, 3890 (2021).

  • Chiappe, L. M., Norell, M. & Clark, J. A New Skull of Gobipteryx minuta (Aves: Enantiornithes) From the Cretaceous of the Gobi Desert (American Museum of Natural History, 2001).

  • Witmer, L. M. The craniofacial air sac system of Mesozoic birds (Aves). Zool. J. Linn. Soc. 100, 327–378 (1990).

    Article 

    Google Scholar
     

  • Hu, H., O’Connor, J. K., Wang, M., Wroe, S. & McDonald, P. G. New anatomical information on the bohaiornithid Longusunguis and the presence of a plesiomorphic diapsid skull in Enantiornithes. J. Syst. Palaeont. 18, 1481–1495 (2020).

    Article 

    Google Scholar
     

  • Wang, M. & Hu, H. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. Anat. Rec. 300, 62–75 (2017).

    Article 

    Google Scholar
     

  • Wang, M., Stidham, T. A., O’Connor, J. K. & Zhou, Z. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife 11, e81337 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. New information on the anatomy of the Chinese Early Cretaceous Bohaiornithidae (Aves: Enantiornithes) from a subadult specimen of Zhouornis hani. PeerJ 2, e407 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connor, J. K. et al. A new enantiornithine from the Yixian Formation with the first recognized avian enamel specialization. J. Vert. Paleontol. 33, 1–12 (2013).

    Article 

    Google Scholar
     

  • Chiappe, L. M., Ji, S.-A., Ji, Q. & Norell, M. A. Anatomy and Systematics of the Confuciusornithidae (Theropoda, Aves) From the Late Mesozoic of Northeastern China (American Museum of Natural History, 1999).

  • Hu, H. et al. Cranial osteology and palaeobiology of the Early Cretaceous bird Jeholornis prima (Aves: Jeholornithiformes). Zool. J. Linn. Soc. 198, 93–112 (2023).

    Article 

    Google Scholar
     

  • Ostrom, J. H. A new theropod dinosaur from the Lower Cretaceous of Montana. Postilla 128, 1–17 (1969).

  • Tsuihiji, T. et al. An exquisitely preserved troodontid theropod with new information on the palatal structure from the Upper Cretaceous of Mongolia. Naturwissenschaften 101, 131–142 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Benito, J., Kuo, P.-C., Widrig, K. E., Jagt, J. W. & Field, D. J. Cretaceous ornithurine supports a neognathous crown bird ancestor. Nature 612, 100–105 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chiappe, L. M. Mesozoic Birds (Wiley Online Library, 2002).

  • Bell, A. & Chiappe, L. M. Anatomy of Parahesperornis: evolutionary mosaicism in the Cretaceous Hesperornithiformes (Aves). Life 10, 62 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bühler, P., Martin, L. D. & Witmer, L. M. Cranial kinesis in the Late Cretaceous birds Hesperornis and Parahesperornis. Auk 105, 111–122 (1988).

  • Kuo, P. C., Benson, R. B. & Field, D. J. The influence of fossils in macroevolutionary analyses of 3D geometric morphometric data: a case study of galloanseran quadrates. J. Morphol. 284, e21594 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Marugán‐Lobón, J., Nebreda, S. M., Navalón, G. & Benson, R. B. Beyond the beak: brain size and allometry in avian craniofacial evolution. J. Anat. 240, 197–209 (2022).

  • Alonso, P. D., Milner, A. C., Ketcham, R. A., Cookson, M. J. & Rowe, T. B. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430, 666–669 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Balanoff, A. M., Norell, M. A., Hogan, A. V. & Bever, G. S. The endocranial cavity of oviraptorosaur dinosaurs and the increasingly complex, deep history of the avian brain. Brain Behav. Evol. 91, 125–135 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, C., Watanabe, A., Qin, Z., Logan King, J., Witmer, L. M., Ma, Q. & Xu, X. Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda). Comm. Biol. 7, 168 (2024).

  • Early, C. M., Iwaniuk, A. N., Ridgely, R. C. & Witmer, L. M. Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds. J. Anat. 237, 1162–1176 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fabbri, M. et al. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat. Ecol. Evol. 1, 1543 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Iwaniuk, A. N., Hurd, P. L. & Wylie, D. R. Comparative morphology of the avian cerebellum: I. Degree of foliation. Brain Behav. Evol. 68, 45–62 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Senglaub, K. Das Kleinhirn der Vögel in Beziehung zu phylogenetischer Stellung, Lebensweise und Körpergrösse. Z. Wiss. Zool. 169, 1–63 (1963).


    Google Scholar
     

  • Watanabe, A., Balanoff, A. M., Gignac, P. M., Gold, M. E. L. & Norell, M. A. Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 10, e68809 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Widrig, K. E., Navalón, G. & Field, D. J. Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system. J. Morphol. 285, e21710 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hanson, M., Hoffman, E. A., Norell, M. A. & Bhullar, B.-A. S. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 372, 601–609 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Beyrand, V. et al. Multiphase progenetic development shaped the brain of flying archosaurs. Sci. Rep. 9, 10807 (2019).

  • Bhullar, B.-A. S. et al. Birds have paedomorphic dinosaur skulls. Nature 487, 223–226 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Griffin, C. T. et al. The developing bird pelvis passes through ancestral dinosaurian conditions. Nature 608, 346–352 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Herbst, E. C., Meade, L. E., Lautenschlager, S., Fioritti, N. & Scheyer, T. M. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender. R. Soc. Open Sci. 9, 220519 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjarnason, A. & Benson, R. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM 7, e125 (2021).

  • Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306–311 (2022).

  • Wiley, D. Landmark Editor 3.0 (Institute for Data Analysis and Visualization, 2006).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Bookstein, F. L. in Image Fusion and Shape Variability Techniques (eds Mardia, K. V. et al.) 59–70 (Leeds Univ. Press, 1996).

  • Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. geomorph v4. 0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).

    Article 

    Google Scholar
     

  • Bookstein, F. L. & Green, W. D. in Mathematical Methods in Medical Imaging II (eds Wilson, J. N. & Wilson, D. C.) 14–28 (SPIE, 1993).

  • Schlager, S. in Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Elsevier, 2017).

  • Felice, R. rnfelice/hot.dots: hot.dots v0.1.0. Zenodo https://doi.org/10.5281/zenodo.3929193 (2020).

  • Goloboff, P. A. & Morales, M. E. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 39, 144–153 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Slowinski, J. B. “Unordered” versus “ordered” characters. Syst. Biol. 42, 155–165 (1993).

    Article 

    Google Scholar
     

  • Chiappe, L., Navalón, G. & Field, D. J. Cretaceous bird from Brazil fills key gap in the evolution of the avian skull and brain. Zenodo https://doi.org/10.5281/zenodo.10696014 (2024).


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post