Nature General Tidally driven remelting around 4.35 billion years ago indicates the Moon is old

Tidally driven remelting around 4.35 billion years ago indicates the Moon is old

Tidally driven remelting around 4.35 billion years ago indicates the Moon is old post thumbnail image


  • Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaffney, A. M. & Borg, L. E. A young solidification age for the lunar magma ocean. Geochim. Cosmochim. Acta 140, 227–240 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosci. 2, 133–136 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greer, J. et al. 4.46 Ga zircons anchor chronology of lunar magma ocean. Geochem. Persp. Let. 27, 49–53 (2023).

    Article 

    Google Scholar
     

  • Barboni, M. et al. High-precision U–Pb zircon dating identifies a major magmatic event on the Moon at 4.338 Ga. Sci. Adv. 10, eadn9871 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuk, M., Hamilton, D. P., Lock, S. J. & Stewart, S. T. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature 539, 402–406 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuyama, I., Trinh, A. & Keane, J. T. The lunar fossil figure in a Cassini state. Planet. Sci. J. 2, 232 (2021).

    Article 

    Google Scholar
     

  • Woo, J. M. Y., Nesvorný, D., Scora, J. & Morbidelli, A. Terrestrial planet formation from a ring: long-term simulations accounting for the giant planet instability. Icarus 417, 116109 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nesvorný, D. et al. Early bombardment of the moon: connecting the lunar crater record to the terrestrial planet formation. Icarus 399, 115545 (2023).

    Article 

    Google Scholar
     

  • Day, J. M. D. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warren, P. H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. Lett. 13, 201–240 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borg, L. E. & Carlson, R. W. The evolving chronology of Moon formation. Annu. Rev. Earth Planet. Sci. 51, 25–52 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-lived magma ocean on a young Moon. Sci. Adv. 6, eaba8949 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mezger, K., Maltese, A. & Vollstaedt, H. Accretion and differentiation of early planetary bodies as recorded in the composition of the silicate Earth. Icarus 365, 114497 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Thiemens, M. M., Sprung, P., Fonseca, R. O. C., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borg, L. E., Brennecka, G. A. & Kruijer, T. S. The origin of volatile elements in the Earth–Moon system. Proc. Natl Acad. Sci. USA 119, e2115726119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruijer, T. S., Archer, G. J. & Kleine, T. No 182W evidence for early Moon formation. Nat. Geosci. https://doi.org/10.1038/s41561-021-00820-2 (2021).

  • Garrick-Bethell, I., Perera, V., Nimmo, F. & Zuber, M. T. The tidal-rotational shape of the Moon and evidence for polar wander. Nature 512, 181–184 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Reilly, T. C. & Davies, G. F. Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8, 313–316 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Spencer, D. C., Katz, R. F. & Hewitt, I. J. Tidal controls on the lithospheric thickness and topography of Io from magmatic segregation and volcanism modelling. Icarus 359, 114352 (2021).

    Article 

    Google Scholar
     

  • Miyazaki, Y. & Stevenson, D. J. A subsurface magma ocean on Io: exploring the steady state of partially molten planetary bodies. Planet. Sci. J. 3, 256 (2022).

    Article 

    Google Scholar
     

  • Cuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, Z., Wisdom, J. & Elkins-Tanton, L. Coupled orbital-thermal evolution of the early Earth–Moon system with a fast-spinning Earth. Icarus 281, 90–102 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rufu, R. & Canup, R. M. Tidal evolution of the evection resonance/quasi-resonance and the angular momentum of the Earth–Moon system. J. Geophys. Res. Planets 125, e2019JE006312 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ćuk, M., Lock, S. J., Stewart, S. T. & Hamilton, D. P. Tidal evolution of the Earth–Moon system with a high initial obliquity. Planet. Sci. J. 2, 147 (2021).

    Article 

    Google Scholar
     

  • Siegler, M. A., Bills, B. G. & Paige, D. A. Effects of orbital evolution on lunar ice stability. J. Geophys. Res. Planets 116, E03010 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Downey, B. G., Nimmo, F. & Matsuyama, I. The thermal–orbital evolution of the Earth–Moon system with a subsurface magma ocean and fossil figure. Icarus 389, 115257 (2023).

    Article 

    Google Scholar
     

  • Tian, Z. & Wisdom, J. Vertical angular momentum constraint on lunar formation and orbital history. Proc. Natl Acad. Sci. USA 117, 15460–15464 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veeder, G. J., Matson, D. L., Johnson, T. V., Blaney, D. L. & Goguen, J. D. Io’s heat flow from infrared radiometry: 1983–1993. J. Geophys. Res. 99, 17095–17162 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, L. & Head, J. W. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 1: theory). Icarus 283, 146–175 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Brandon, A. D. et al. Re-evaluating Nd-142/Nd-144 in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. Geochim. Cosmochim. Acta 73, 6421–6445 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Longhi, J. Experimental petrology and petrogenesis of mare volcanics. Geochim. Cosmochim. Acta 56, 2235–2251 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Whitaker, E. A. The lunar Procellarum Basin. In Multi-ring Basins: Formation and Evolution; Proc. Lunar and Planetary Science Conference 105–111 (Pergamon Press, 1981).

  • Garrick-Bethell, I., Wisdom, J. & Zuber, M. T. Evidence for a past high-eccentricity lunar orbit. Science 313, 652–655 (2006).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Miljković, K. et al. Large impact cratering during lunar magma ocean solidification. Nat. Commun. 12, 5433 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, M.-H. et al. Reconstructing the late accretion history of the Moon. Nature 571, 226–229 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahnle, K. J., Lupu, R., Dobrovolskis, A. & Sleep, N. H. The tethered Moon. Earth Planet. Sci. Lett. 427, 74–82 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Korenaga, J. Rapid solidification of Earth’s magma ocean limits early lunar recession. Icarus 400, 115564 (2023).

    Article 

    Google Scholar
     

  • Ray, R. D., Eanes, R. J. & Chao, B. F. Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry. Nature 381, 595–597 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Farhat, M., Auclair-Desrotour, P., Boué, G. & Laskar, J. The resonant tidal evolution of the Earth–Moon distance. Astron. Astrophys. 665, L1 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Ann. Rev. Earth Planet. Sci. 45, 389–417 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salmon, J. & Canup, R. M. Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760, 83 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, 2001).

  • Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, W. B., Simon, J. I. & Webb, A. A. G. Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, 1986).

  • Cherniak, D. J. & Watson, E. B. Pb diffusion in zircon. Chem. Geol. 172, 5–24 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meyer, J., Elkins-Tanton, L. & Wisdom, J. Coupled thermal–orbital evolution of the early Moon. Icarus 208, 1–10 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 2000); https://doi.org/10.1017/CBO9781139174817.

  • Citron, R. I., Smith, D. E., Stewart, S. T., Hood, L. L. & Zuber, M. T. The South Pole–Aitken Basin: constraints on impact excavation, melt, and ejecta. Geophys. Res. Lett. 51, e2024GL110034 (2024).

    Article 

    Google Scholar
     

  • Jones, M. J. et al. A South Pole–Aitken impact origin of the lunar compositional asymmetry. Sci. Adv. 8, eabm8475 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snape, J. F. et al. Ancient volcanism on the Moon: insights from Pb isotopes in the MIL 13317 and Kalahari 009 lunar meteorites. Earth Planet. Sci. Lett. 502, 84–95 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989).

  • Croft, S. K. Cratering flow fields: implications for the excavation and transient expansion stages of crater formation. Lunar Planet. Sci. Conf. Proc. 3, 2347–2378 (1980).

    ADS 

    Google Scholar
     

  • Barnhart, C. J. & Nimmo, F. Role of impact excavation in distributing clays over Noachian surfaces. J. Geophys. Res. Planets 116, E01009 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Robbins, S. J. A new global database of lunar impact craters >1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis. J. Geophys. Res. Planets 124, 871–892 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole–Aitken Basin impact. Icarus 220, 730–743 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ganguly, J. & Tirone, M. Relationship between cooling rate and cooling age of a mineral: theory and applications to meteorites. Meteorit. Planet. Sci. 36, 167–175 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post