Nature General Episodic and associative memory from spatial scaffolds in the hippocampus

Episodic and associative memory from spatial scaffolds in the hippocampus

Episodic and associative memory from spatial scaffolds in the hippocampus post thumbnail image


  • Scoville, WilliamBeecher & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11 (1957).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Solstad, T., Boccara, C. N., Kropff, E., Moser, May-Britt & Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lever, C., Burton, S., Jeewajee, A., O’Keefe, J. & Burgess, N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29, 9771–9777 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Samsonovich, A. & McNaughton, B. L. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hasselmo, M. E. A model of episodic memory: mental time travel along encoded trajectories using grid cells. Neurobiol. Learn. Mem. 92, 559–573 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Agmon, H. & Burak, Y. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability. eLife 9, e56894 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Abu-Mostafa, Y. S. & St Jacques, J. Information capacity of the hopfield model. IEEE Trans. Inf. Theory 31, 461–464 (1985).

    Article 
    MATH 

    Google Scholar
     

  • Gardner, E. The space of interactions in neural network models. J. Phys. A 21, 257–270 (1988).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Yates, F. A. The Art of Memory (Routledge & Kegan Paul, 1966).

  • Proust, M. À la Recherche du Temps Perdu (Grasset, 1913).

  • Reed, J. M. & Squire, L. R. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav. Neurosci. 111, 667 (1997).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zola, S. M. et al. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 20, 451–463 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G. & Squire, L. R. Recognition memory and the human hippocampus. Neuron 37, 171–180 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichenbaum, H. On the integration of space, time, and memory. Neuron 95, 1007–1018 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Taube, J. S., Muller, R. U. & Ranck, J. B. Head-direction cells recorded from the postsubiculum in freely moving rats. i. description and quantitative analysis. J. Neurosci. 10, 420–435 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fenton, AndréA. et al. Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J. Neurosci. 28, 11250–11262 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Colgin, LauraLee et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72–78 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Buzsáki, György & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal–entorhinal system. Nat. Neurosci. 16, 130–138 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088–3092 (1984).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Marr, D., Willshaw, D. & McNaughton, B. Simple Memory: A Theory for Archicortex (Springer, 1991).

  • Skaggs, W., Knierim, J., Kudrimoti, H. & McNaughton, B. A model of the neural basis of the rat’s sense of direction. Adv. Neural Inf. Process. Syst. 7, 173–180 (1995).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Burgess, N., Recce, M. & O’Keefe, J. A model of hippocampal function. Neural Netw. 7, 1065–1081 (1994).

    Article 
    MATH 

    Google Scholar
     

  • McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419 (1995).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Brun, V. H. et al. Place cells and place recognition maintained by direct entorhinal–hippocampal circuitry. Science 296, 2243–2246 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hartley, T., Burgess, N., Lever, C., Cacucci, F. & O’keefe, J. Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10, 369–379 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sreenivasan, S. & Fiete, I. Grid cells generate an analog error-correcting code for singularly precise neural computation. Nat. Neurosci. 14, 1330–1337 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yoon, Ki. Jung et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16, 1077–1084 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yoon, K., Lewallen, S., Kinkhabwala, A. A., Tank, D. W. & Fiete, I. R. Grid cell responses in 1D environments assessed as slices through a 2D lattice. Neuron 89, 1086–1099 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solstad, T., Moser, E. I. & Einevoll, G. T. From grid cells to place cells: a mathematical model. Hippocampus 16, 1026–1031 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Trettel, S. G., Trimper, J. B., Hwaun, E., Fiete, I. R. & Colgin, L. L. Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors. Nat. Neurosci. 22, 609–617 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gardner, R. J., Lu, L., Wernle, T., Moser, May-Britt & Moser, E. I. Correlation structure of grid cells is preserved during sleep. Nat. Neurosci. 22, 598–608 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • O’Reilly, R. C., Bhattacharyya, R., Howard, M. D. & Ketz, N. Complementary learning systems. Cogn. Sci. 38, 1229–1248 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hardcastle, K., Ganguli, S. & Giocomo, L. M. Environmental boundaries as an error correction mechanism for grid cells. Neuron 86, 827–839 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dordek, Y., Soudry, D., Meir, R. & Derdikman, D. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. eLife 5, e10094 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keinath, A. T., Epstein, R. A. & Balasubramanian, V. Environmental deformations dynamically shift the grid cell spatial metric. eLife 7, e38169 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ocko, S. A., Hardcastle, K., Giocomo, L. M. & Ganguli, S. Emergent elasticity in the neural code for space. Proc. Natl Acad. Sci. USA 115, E11798–E11806 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhuri, R. & Fiete, I. Bipartite expander hopfield networks as self-decoding high-capacity error correcting codes. Adv. Neural Inf. Process. Syst. 32, 4175 (2019).

    MATH 

    Google Scholar
     

  • Whittington, James C. R. et al. The Tolman–Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–1263 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Buzsáki, György & Tingley, D. Space and time: the hippocampus as a sequence generator. Trends Cogn. Sci. 22, 853–869 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543, 719–722 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Killian, N. J., Potter, S. M. & Buffalo, E. A. Saccade direction encoding in the primate entorhinal cortex during visual exploration. Proc. Natl Acad. Sci. USA 112, 15743–15748 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neupane, S., Fiete, L. & Jazayeri, M. Mental navigation in the primate entorhinal cortex. Nature 630, 704–711 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krotov, D. and Hopfield, J. Large associative memory problem in neurobiology and machine learning. Preprint at https://doi.org/10.48550/arXiv.2008.06996 (2020).

  • Witter, M. P., Doan, T. P., Jacobsen, B., Nilssen, E. S. & Ohara, S. Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with some comparative notes. Front. Syst. Neurosci. 11, 46 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiete, I. R., Burak, Y. & Brookings, T. What grid cells convey about rat location. J. Neurosci. 28, 6858–6871 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, S., Chandra, S. & Fiete, I. Content addressable memory without catastrophic forgetting by heteroassociation with a fixed scaffold. In 39th International Conference on Machine Learning 19658–19682 (PMLR, 2022).

  • Radhakrishnan, A., Belkin, M. & Uhler, C. Overparameterized neural networks implement associative memory. Proc. Natl Acad. Sci. USA 117, 27162–27170 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kleinfeld, D. & Sompolinsky, H. Associative neural network model for the generation of temporal patterns. theory and application to central pattern generators. Biophys. J. 54, 1039–1051 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fyhn, M., Hafting, T., Treves, A., Moser, May-Britt & Moser, E. I. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446, 190–194 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Huszár, R., Zhang, Y., Blockus, H. & Buzsáki, György Preconfigured dynamics in the hippocampus are guided by embryonic birthdate and rate of neurogenesis. Nat. Neurosci. 25, 1201–1212 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bonnevie, T. et al. Grid cells require excitatory drive from the hippocampus. Nat. Neurosci. 16, 309–317 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Almog, N. et al. During hippocampal inactivation, grid cells maintain synchrony, even when the grid pattern is lost. eLife 8, e47147 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hales, J. B. et al. Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. Cell Rep. 9, 893–901 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grieves, R. M., Wood, E. R. & Dudchenko, P. A. Place cells on a maze encode routes rather than destinations. eLife 5, e15986 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yadav, N., Toader, A. & Rajasethupathy, P. Thalamic and prefrontal contributions to an evolving memory. Neuron 112, 1045–1059 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsoi, SauYee et al. Telencephalic outputs from the medial entorhinal cortex are copied directly to the hippocampus. eLife 11, e73162 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donato, F., Jacobsen, R. I., Moser, May-Britt & Moser, E. I. Stellate cells drive maturation of the entorhinal–hippocampal circuit. Science 355, eaai8178 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Benna, M. K. & Fusi, S. Place cells may simply be memory cells: Memory compression leads to spatial tuning and history dependence. Proc. Natl Acad. Sci. USA 118, e2018422118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Teyler, T. J. & Rudy, J. W. The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17, 1158–1169 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Alme, C. B. et al. Place cells in the hippocampus: eleven maps for eleven rooms. Proc. Natl Acad. Sci. USA 111, 18428–18435 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yim, ManYi, Sadun, L. A., Fiete, I. R. & Taillefumier, T. Place-cell capacity and volatility with grid-like inputs. eLife 10, e62702 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tapson, J. & van Schaik, A. Learning the pseudoinverse solution to network weights. Neural Netw. 45, 94–100 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • O’Reilly, R. C. Six principles for biologically based computational models of cortical cognition. Trends Cogn. Sci. 2, 455–462 (1998).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Personnaz, L., Guyon, I. & Dreyfus, G. Information storage and retrieval in spin-glass like neural networks. J. Physique Lettres 46, 359–365 (1985).

    Article 
    MATH 

    Google Scholar
     

  • Personnaz, L., Guyon, I. & Dreyfus, G. Collective computational properties of neural networks: new learning mechanisms. Phys. Rev. A 34, 4217 (1986).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Parisi, G. A memory which forgets. J. Phys. A 19, L617 (1986).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Fusi, S. & Abbott, L. F. Limits on the memory storage capacity of bounded synapses. Nat. Neurosci. 10, 485–493 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tsodyks, M. V. & Feigel’man, M. V. The enhanced storage capacity in neural networks with low activity level. Europhysics Lett. 6, 101 (1988).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dominguez, D., Koroutchev, K., Serrano, E. & Rodríguez, F. B. Information and topology in attractor neural networks. Neural Comput. 19, 956–973 (2007).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post