Nature General Directly imaging the cooling flow in the Phoenix cluster

Directly imaging the cooling flow in the Phoenix cluster

Directly imaging the cooling flow in the Phoenix cluster post thumbnail image


  • Fabian, A. C., Nulsen, P. E. J. & Canizares, C. R. Cooling flows in clusters of galaxies. Nature 310, 733–740 (1984).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fabian, A. C. Cooling flows in clusters of galaxies. Annu. Rev. Astron. Astrophys. 32, 277–318 (1994).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • McNamara, B. R. & O’Connell, R. W. Star formation in cooling flows in clusters of galaxies. Astron. J. 98, 2018–2043 (1989).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Allen, S. W. Starbursts in cooling flows: blue continua and emission-line nebulae in central cluster galaxies. Mon. Not. R. Astron. Soc. 276, 947–960 (1995).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hicks, A. K. & Mushotzky, R. Star formation rates in cooling flow clusters: a UV pilot study with archival XMM-Newton optical monitor data. Astrophys. J. Lett. 635, L9–L12 (2005).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McDonald, M., Gaspari, M., McNamara, B. R. & Tremblay, G. R. Revisiting the cooling flow problem in galaxies, groups, and clusters of galaxies. Astrophys. J. 858, 45 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Canizares, C. R., Markert, T. H. & Donahue, M. E. in Cooling Flows in Clusters and Galaxies (ed. Fabian, A. C.) 63 (1988).

  • David, L. P. et al. A high-resolution study of the Hydra A cluster with Chandra: comparison of the core mass distribution with theoretical predictions and evidence for feedback in the cooling flow. Astrophys. J. 557, 546–559 (2001).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Peterson, J. R. et al. High-resolution X-ray spectroscopic constraints on cooling-flow models for clusters of galaxies. Astrophys. J. 590, 207–224 (2003).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hlavacek-Larrondo, J. et al. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2. Astrophys. J. 805, 35 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gaspari, M., Melioli, C., Brighenti, F. & D’Ercole, A. The dance of heating and cooling in galaxy clusters: three-dimensional simulations of self-regulated active galactic nuclei outflows. Mon. Not. R. Astron. Soc. 411, 349–372 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prasad, D., Sharma, P. & Babul, A. Cool core cycles: cold gas and AGN jet feedback in cluster cores. Astrophys. J. 811, 108 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Li, Y., Ruszkowski, M. & Bryan, G. L. AGN heating in simulated cool-core clusters. Astrophys. J. 847, 106 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Yang, H. Y. K., Gaspari, M. & Marlow, C. The impact of radio AGN bubble composition on the dynamics and thermal balance of the intracluster medium. Astrophys. J. 871, 6 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McDonald, M. et al. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies. Nature 488, 349–352 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • McNamara, B. R. et al. A mechanism for stimulating AGN feedback by lifting gas in massive galaxies. Astrophys. J. 830, 79 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Revaz, Y., Combes, F. & Salomé, P. Formation of cold filaments in cooling flow clusters. Astron. Astrophys. 477, L33–L36 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McDonald, M. et al. Anatomy of a cooling flow: the feedback response to pure cooling in the core of the Phoenix cluster. Astrophys. J. 885, 63 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Russell, H. R. et al. Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. Astrophys. J. 836, 130 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Gaspari, M. et al. Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • McDonald, M. et al. Deep Chandra, HST-COS, and Megacam observations of the Phoenix cluster: extreme star formation and AGN feedback on hundred kiloparsec scales. Astrophys. J. 811, 111 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pinto, C. et al. AGN feedback in the Phoenix cluster. Mon. Not. R. Astron. Soc. 480, 4113–4123 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Oegerle, W. R. et al. FUSE observations of cooling-flow gas in the galaxy clusters A1795 and A2597. Astrophys. J. 560, 187–193 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bregman, J. N., Fabian, A. C., Miller, E. D. & Irwin, J. A. On VI observations of galaxy clusters: evidence for modest cooling flows. Astrophys. J. 642, 746–751 (2006).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fabian, A. C. et al. Hidden cooling flows in clusters of galaxies. Mon. Not. R. Astron. Soc. 515, 3336–3345 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sparks, W. B. et al. Hundred thousand degree gas in the Virgo cluster of galaxies. Astrophys. J. Lett. 750, L5 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Anderson, M. E. & Sunyaev, R. Searching for FUV line emission from 107 K gas in massive elliptical galaxies and galaxy clusters as a tracer of turbulent velocities. Mon. Not. R. Astron. Soc. 459, 2806–2821 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Canning, R. E. A. et al. Detection of optical coronal emission from 106-K gas in the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 411, 411–421 (2011).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Chatzikos, M. et al. Implications of coronal line emission in NGC 4696*. Mon. Not. R. Astron. Soc. 446, 1234–1244 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McDonald, M. et al. The state of the warm and cold gas in the extreme starburst at the core of the Phoenix galaxy cluster (SPT-CLJ2344-4243). Astrophys. J. 784, 18 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pope, E. C. D., Babul, A., Pavlovski, G., Bower, R. G. & Dotter, A. Mass transport by buoyant bubbles in galaxy clusters. Mon. Not. R. Astron. Soc. 406, 2023–2037 (2010).

    ADS 

    Google Scholar
     

  • Gaspari, M., Ruszkowski, M. & Sharma, P. Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wittor, D. & Gaspari, M. Dissecting the turbulent weather driven by mechanical AGN feedback. Mon. Not. R. Astron. Soc. 498, 4983–5002 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ferland, G. J. et al. CLOUDY 90: numerical simulation of plasmas and their spectra. Publ. Astron. Soc. Pac. 110, 761–778 (1998).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chatzikos, M. et al. The 2023 release of Cloudy. Rev. Mex. Astron. Astrofis. 59, 327–343 (2023).

    ADS 
    MATH 

    Google Scholar
     

  • Saccheo, I. et al. The WISSH quasars project. XI. The mean spectral energy distribution and bolometric corrections of the most luminous quasars. Astron. Astrophys. 671, A34 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Indriolo, N., Geballe, T. R., Oka, T. & McCall, B. J. H+3 in diffuse interstellar clouds: a tracer for the cosmic-ray ionization rate. Astrophys. J. 671, 1736–1747 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gaspari, M. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence. Mon. Not. R. Astron. Soc. 451, L60–L64 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Jenkins, E. B. A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Gaspari, M., Temi, P. & Brighenti, F. Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 466, 677–704 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prasad, D., Sharma, P., Babul, A., Voit, G. M. & O’Shea, B. W. Cool-core cycles and Phoenix. Mon. Not. R. Astron. Soc. 495, 594–599 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fabian, A. C. et al. The relationship between the optical Hα filaments and the X-ray emission in the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 344, L48–L52 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Gendron-Marsolais, M. et al. Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. Mon. Not. R. Astron. Soc. 479, L28–L33 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McNamara, B. R. & Nulsen, P. E. J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14, 055023 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fabian, A. C. et al. Hidden cooling flows in clusters of galaxies II: a wider sample. Mon. Not. R. Astron. Soc. 521, 1794–1807 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Spilker, J. S. et al. Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy. Nature 618, 708–711 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Smith, J. D. T. et al. The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. Astrophys. J. 656, 770–791 (2007).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fitzpatrick, E. L. & Massa, D. An analysis of the shapes of ultraviolet extinction curves. I. The 2,175 angstrom bump. Astrophys. J. 307, 286 (1986).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Donnan, F. R. et al. The obscured nucleus and shocked environment of VV 114E revealed by JWST/MIRI spectroscopy. Mon. Not. R. Astron. Soc. 519, 3691–3705 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI medium resolution spectrometer. Astron. Astrophys. 656, A57 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Tsuchikawa, T. et al. A systematic study of silicate absorption features in heavily obscured AGNs observed by Spitzer/IRS. Astron. Astrophys. 651, A117 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Veilleux, S. et al. Spitzer Quasar and Ulirg Evolution Study (QUEST). IV. Comparison of 1 Jy ultraluminous infrared galaxies with Palomar-Green quasars. Astrophys. J. Supp. 182, 628–666 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Markwardt, C. B. Non-linear least-squares fitting in IDL with MPFIT. in Astronomical Data Analysis Software and Systems XVIII (eds Bohlender, D. A. et al.) 251 (2009).

  • Mogensen, P. K. & Riseth, A. N. Optim: a mathematical optimization package for Julia. J. Open Source Softw. 3, 615 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Del Zanna, G., Dere, K. P., Young, P. R. & Landi, E. CHIANTI—an atomic database for emission lines. XVI. version 10, further extensions. Astrophys. J. 909, 38 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fielding, D. B. & Bryan, G. L. The structure of multiphase galactic winds. Astrophys. J. 924, 82 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Meena, B. et al. Investigating the narrow-line region dynamics in nearby active galaxies. Astrophys. J. 943, 98 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post