Nature General Learned magnetic map cues and two mechanisms of magnetoreception in turtles

Learned magnetic map cues and two mechanisms of magnetoreception in turtles

Learned magnetic map cues and two mechanisms of magnetoreception in turtles post thumbnail image


  • Lohmann, K. J., Goforth, K. M., Mackiewicz, A. G., Lim, D. S. & Lohmann, C. M. F. Magnetic maps in animal navigation. J. Comp. Physiol. A 208, 41–67 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Gould, J. L. Animal navigation: memories of home. Curr. Biol. 25, R104–R106 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gould, J. L. & Gould, C. G. Nature’s Compass (Princeton Univ. Press, 2012).

  • Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Henbest, K. B., Kukura, P., Rodgers, C. T., Hore, P. J. & Timmel, C. R. Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J. Am. Chem. Soc. 126, 8102–8103 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Granger, J., Cummer, S. A., Lohmann, K. J. & Johnsen, S. Environmental sources of radio frequency noise: potential impacts on magnetoreception. J. Comp. Physiol. A 208, 83–95 (2022).

    Article 

    Google Scholar
     

  • Alerstam, T. & Bäckman, J. Ecology of animal migration. Curr. Biol. 28, R968–R972 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Putman, N. Marine migrations. Curr. Biol. 28, R972–R976 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warrant, E. et al. The Australian bogong moth Agrotis infusa: a long-distance nocturnal navigator. Front. Behav. Neurosci. 10, 77 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiltschko, R. & Wiltschko, W. The discovery of the use of magnetic navigational information. J. Comp. Physiol. A 208, 9–18 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. & Swing, T. Geomagnetic map used in sea turtle navigation. Nature 428, 909–910 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brothers, J. R. & Lohmann, K. J. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr. Biol. 25, 392–396 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wynn, J., Padget, O., Mouritsen, H., Perrins, C. & Guilford, T. Natal imprinting to the Earth’s magnetic field in a pelagic seabird. Curr. Biol. 30, 2869–2873.e2 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lohmann, K. J., Cain, S. D., Dodge, S. A. & Lohmann, C. M. Regional magnetic fields as navigational markers for sea turtles. Science 294, 364–366 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lohmann, K. J., Putman, N. F. & Lohmann, C. M. F. The magnetic map of hatchling loggerhead sea turtles. Curr. Opin. Neurobiol. 22, 336–342 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Musick, J. A. & Limpus, C. J. in The Biology of Sea Turtles Vol. 1 (eds Lutz, P. L. & Musick, J. A.) 137–163 (CRC, 1997).

  • Avens, L., Braun-McNeill, J., Epperly, S. & Lohmann, K. J. Site fidelity and homing behavior in juvenile loggerhead sea turtles (Caretta caretta). Mar. Biol. 143, 211–220 (2003).

    Article 

    Google Scholar
     

  • Broderick, A. C., Coyne, M. S., Fuller, W. J., Glen, F. & Godley, B. J. Fidelity and over-wintering of sea turtles. Proc. R. Soc. B 274, 1533–1539 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Putman, N. F., Endres, C. S., Lohmann, C. M. F. & Lohmann, K. J. Longitude perception and bicoordinate magnetic maps in sea turtles. Curr. Biol. 21, 463–466 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Putman, N. F. et al. An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Curr. Biol. 24, 446–450 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lohmann, K. J., Hester, J. T. & Lohmann, C. M. F. Long-distance navigation in sea turtles. Ethol. Ecol. Evol. 11, 1–23 (1999).

    Article 
    MATH 

    Google Scholar
     

  • Gaspar, P. et al. Oceanic dispersal of juvenile leatherback turtles: going beyond passive drift modeling. Mar. Ecol. Prog. Ser. 457, 265–284 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Scott, R., Marsh, R. & Hays, G. C. Ontogeny of long distance migration. Ecology 95, 2840–2850 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Avens, L. & Lohmann, K. J. Navigation and seasonal migratory orientation in juvenile sea turtles. J. Exp. Biol. 207, 1771–1778 (2004).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • González Carman, V. et al. Revisiting the ontogenetic shift paradigm: the case of juvenile green turtles in the SW Atlantic. J. Exp. Mar. Biol. Ecol. 429, 64–72 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Meylan, P. A., Hardy, R. F., Gray, J. A. & Meylan, A. B. A half-century of demographic changes in a green turtle (Chelonia mydas) foraging aggregation during an era of seagrass decline. Mar. Biol. 169, 74 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Putman, N. F. & Lohmann, K. J. Compatibility of magnetic imprinting and secular variation. Curr. Biol. 18, R596–R597 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lohmann, K. J., Lohmann, C. M. F. & Endres, C. S. The sensory ecology of ocean navigation. J. Exp. Biol. 211, 1719–1728 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Dacke, M. et al. Multimodal cue integration in the dung beetle compass. Proc. Natl Acad. Sci. USA 116, 14248–14253 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nordmann, G. C., Hochstoeger, T. & Keays, D. A. Magnetoreception — a sense without a receptor. PLoS Biol. 15, e2003234 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wan, G., Hayden, A. N., Iiams, S. E. & Merlin, C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat. Commun. 12, 771 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bradlaugh, A. A. et al. Essential elements of radical pair magnetosensitivity in Drosophila. Nature 615, 111–116 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nimpf, S. & Keays, D. A. Myths in magnetosensation. iScience 25, 104454 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quinn, T. P., Merrill, R. T. & Brannon, E. L. Magnetic field detection in sockeye salmon. J. Exp. Zool. 217, 137–142 (1981).

    Article 
    MATH 

    Google Scholar
     

  • Lohmann, K. J. & Lohmann, C. M. F. A light-independent magnetic compass in the leatherback sea turtle. Biol. Bull. 185, 149–151 (1993).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Muheim, R., Sjöberg, S. & Pinzon-Rodriguez, A. Polarized light modulates light-dependent magnetic compass orientation in birds. Proc. Natl Acad. Sci. USA 113, 1654–1659 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Netušil, R. et al. Cryptochrome-dependent magnetoreception in a heteropteran insect continues even after 24 h in darkness. J. Exp. Biol. 224, jeb243000 (2021).

  • Wiltschko, R., Ahmad, M., Nießner, C., Gehring, D. & Wiltschko, W. Light-dependent magnetoreception in birds: the crucial step occurs in the dark. J. R. Soc. Interface 13, 20151010 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Light, P., Salmon, M. & Lohmann, K. J. Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J. Exp. Biol. 182, 1–10 (1993).

    Article 
    MATH 

    Google Scholar
     

  • Kirschvink, J. L., Walker, M. M. & Diebel, C. E. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11, 462–467 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irwin, W. P. & Lohmann, K. J. Disruption of magnetic orientation in hatchling loggerhead sea turtles by pulsed magnetic fields. J. Comp. Physiol. A 191, 475–480 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Munro, U., Munro, J. A., Phillips, J. B. & Wiltschko, W. Effect of wavelength of light and pulse magnetisation on different magnetoreception systems in a migratory bird. Aust. J. Zool. 45, 189–198 (1997).

    Article 
    MATH 

    Google Scholar
     

  • Wiltschko, W. & Wiltschko, R. Migratory orientation of European robins is affected by the wavelength of light as well as by a magnetic pulse. J. Comp. Physiol. A 177, 363–369 (1995).

  • Qin, S. et al. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xie, C. Searching for unity in diversity of animal magnetoreception: from biology to quantum mechanics and back. Innovation 3, 100229 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Meister, M. Physical limits to magnetogenetics. eLife 5, e17210 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kalmijn, A. J. in Handbook of Sensory Physiology Vol. 3 (ed. Fessard, A.) 147–200 (Springer-Verlag, 1974).

  • Nimpf, S. et al. A putative mechanism for magnetoreception by electromagnetic induction in the pigeon inner ear. Curr. Biol. 29, 4052–4059.e4 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Phillips, J. B. & Diego-Rasilla, F. J. The amphibian magnetic sense(s). J. Comp. Physiol. A 208, 723–742 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Wiltschko, R. et al. Magnetoreception in birds: the effect of radio-frequency fields. J. R. Soc. Interface 12, 20141103 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Szabo, B., Noble, D. W. A. & Whiting, M. J. Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol. Rev. 96, 331–356 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Alldred, J. C. & Scollar, I. Square cross section coils for the production of uniform magnetic fields. J. Sci. Instrum. 44, 755–760 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Lohmann, K. & Lohmann, C. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J. Exp. Biol. 194, 23–32 (1994).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lohmann, K. J. & Lohmann, C. M. F. Detection of magnetic field intensity by sea turtles. Nature 380, 59–61 (1996).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Endres, C. S., Putman, N. F. & Lohmann, K. J. Perception of airborne odors by loggerhead sea turtles. J. Exp. Biol. 212, 3823–3827 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).

  • Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R version 0.7.2 https://cran.r-project.org/package=rstatix (2023).

  • Anderson, D. esvis: Visualization and estimation of effect sizes. R version 0.3.1 https://cran.r-project.org/package=esvis (2020).

  • Lüdecke, D. esc: Effect size computation for meta analysis. R version 0.5.1 https://cran.r-project.org/package=esc (2019).

  • Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and nonlinear mixed effects models. R version 3.1-166 https://cran.r-project.org/package=nlme (2019).

  • Caldwell, A. R. Exploring equivalence testing with the updated TOSTER R package. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/ty8de (2022).

  • Lakens, D. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal. Sci. 8, 355–362 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Massicotte, P. & South, A. rnaturalearth: World map data from natural earth. R version 1.0.1.9000 https://docs.ropensci.org/rnaturalearth/ (2023).

  • Pebesma, E. Simple Features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023).

  • Putman, N. F., Verley, P., Endres, C. S. & Lohmann, K. J. Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. J. Exp. Biol. 218, 1044–1050 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Merritt, R., Purcell, C. & Stroink, G. Uniform magnetic field produced by three, four, and five square coils. Rev. Sci. Instrum. 54, 879–882 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Lohmann, K. J. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J. Exp. Biol. 155, 37–49 (1991).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Agostinelli, C. & Lund, U. R package “circular”: circular statistics. R version 0.5-1 https://cran.r-project.org/package=circular (2022).

  • COMSOL AB. COMSOL Multiphysics® (COMSOL AB, 2022).

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post