Mouritz, A. P. Introduction to Aerospace Materials (Elsevier, 2012).
Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).
Otsuka, K. & Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater Sci. 50, 511–678 (2005).
Ogawa, Y., Ando, D., Sutou, Y. & Koike, J. A lightweight shape-memory magnesium alloy. Science 353, 368–370 (2016).
Xia, J. et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 369, 855–858 (2020).
Niitsu, K., Kimura, Y., Omori, T. & Kainuma, R. Cryogenic superelasticity with large elastocaloric effect. NPG Asia Mater. 10, 457–457 (2018).
Landau, L. D., Pitaevskii, L. P., Kosevich, A. M. & Lifshitz, E. M. Theory of Elasticity Vol. 7 (Elsevier, 2012).
Hao, S. et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339, 1191–1194 (2013).
Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).
Otsuka, K., Sakamoto, H. & Shimizu, K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys. Acta Metall. 27, 585–601 (1979).
Biesiekierski, A., Wang, J., Gepreel, M. A. H. & Wen, C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 8, 1661–1669 (2012).
Why go to Space? NASA www.nasa.gov/humans-in-space/why-go-to-space/ (2024).
Starship: service to Earth orbit, Moon, Mars and beyond. SPACE-X www.spacex.com/vehicles/starship (2024).
Züttel, A. Materials for hydrogen storage. Mater. Today 6, 24–33 (2003).
Kim, H. Y., Ikehara, Y., Kim, J. I., Hosoda, H. & Miyazaki, S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 54, 2419–2429 (2006).
Fu, J., Yamamoto, A., Kim, H. Y., Hosoda, H. & Miyazaki, S. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 17, 56–67 (2015).
Banerjee, D. & Williams, J. C. Perspectives on titanium science and technology. Acta Mater. 61, 844–879 (2013).
Ohnuma, I. et al. Phase equilibria in the Ti–Al binary system. Acta Mater. 48, 3113–3123 (2000).
Kainuma, R. et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006).
Omori, T. et al. Superelastic effect in polycrystalline ferrous alloys. Science 333, 68–71 (2011).
Kainuma, R., Ohnuma, I., Ishikawa, K. & Ishida, K. Stability of B2 ordered phase in the Ti-rich portion of Ti-Al-Cr and Ti-Al-Fe ternary systems. Intermetallics 8, 2–8 (2000).
Neelakantan, S., Rivera-Díaz-del-Castillo, P. E. J. & van der Zwaag, S. Prediction of the martensite start temperature for β titanium alloys as a function of composition. Scr. Mater. 60, 611–614 (2009).
Al-Zain, Y., Kim, H. Y., Hosoda, H., Nam, T. H. & Miyazaki, S. Shape memory properties of Ti-Nb-Mo biomedical alloys. Acta Mater. 58, 4212–4223 (2010).
Yamagishi, K., Ogawa, Y., Ando, D., Sutou, Y. & Koike, J. Room temperature superelasticity in a lightweight shape memory Mg alloy. Scr. Mater. 168, 114–118 (2019).
Yamaguchi, M. & Umakoshi, Y. The deformation behaviour of intermetallic superlattice compounds. Prog. Mater Sci. 34, 1–148 (1990).
Nam, T. H., Saburi, T. & Shimizu, K. Cu-content depedence of shape memory characteristics in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 959–967 (1990).
Pustovalov, V. V. Serrated deformation of metals and alloys at low temperatures. Low Temp. Phys. 34, 683–723 (2008).
Odaira, T., Xu, S., Xu, X., Omori, T. & Kainuma, R. Elastocaloric switching effect induced by reentrant martensitic transformation. Appl. Phys. Rev. 7, 3 (2020).
Wollants, P., DeBonte, M. & Roos, J. R. A thermodynamic analysis of the stress-induced martensitic transformation in a single crystal. Z. Metall. 70, 113–117 (1979).
Clapp, P. C. A localized soft mode theory for martensitic transformations. Phys. Status Solidi B 57, 561–569 (1973).
Olson, G. B. & Cohen, M. A perspective on martensitic nucleation. Annu. Rev. Mater. Sci. 11, 1–32 (1981).
Nagasawa, A., Makita, T. & Takagi, Y. Anharmonicity and martensitic phase transition in β-phase alloys. J. Phys. Soc. Japan 51, 3876–3881 (1982).
Nakanishi, N. Elastic constants as they relate to lattice properties and martensite formation. Prog. Mater Sci. 24, 143–265 (1980).
Ren, X. & Otsuka, K. The role of softening in elastic constant C44 in martensitic transformation. Scr. Mater. 38, 1669–1675 (1998).
Tane, M. et al. Low Young’s modulus in Ti-Nb-Ta-Zr-O alloys: cold working and oxygen effects. Acta Mater. 59, 6975–6988 (2011).
Darling, T. W. et al. Elastic and thermodynamic properties of the shape-memory alloy AuZn. Philos. Mag. B 82, 825–837 (2002).
Zener, C. M. Elasticity and Anelasticity of Metals (Univ. Chicago Press, 1948).
Walker, E. & Peter, M. Elastic constants of the BCC phase in niobium‐zirconium alloys between 4.2 and 300 K. J. Appl. Phys. 48, 2820–2826 (1977).
Wang, H. L. et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy. Acta Mater. 135, 330–339 (2017).
Al-Zain, Y. et al. Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys. Acta Mater. 59, 1464–1473 (2011).
Kobayashi, H. & Hiki, Y. Anharmonicity in noble metals: nonlinear elasticity in whiskers. Phys. Rev. B 17, 594 (1973).
Chen, L. Y., Richter, G., Sullivan, J. P. & Gianola, D. S. Lattice anharmonicity in defect-free Pd nanowhiskers. Phys. Rev. Lett. 109, 125503 (2012).
Xu, S. et al. Non-Hookean large elastic deformation in bulk crystalline metals. Nat. Commu. 13, 5307 (2022).
Smith, M. et al. The Artemis program: an overview of NASA’s activities to return humans to the moon. In 2020 IEEE Aerospace Conference, 1–10 (IEEE, 2020).
Padula II, S. Utilizing Shape Memory Alloys for Novel, Non-pneumatic Tire Design – Designing for the Best of Both Worlds Case Western Reserve Univ. Colloquium Series, GRC-E-DAA-TN67368 (NASA, 2019).
Xu, S. et al. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71. 5Al17. 5Mn11 shape memory alloy. APL Mater. 4, 106106 (2016).
Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).
Tahara, M., Kim, H. Y., Inamura, T., Hosoda, H. & Miyazaki, S. Lattice modulation and superelasticity in oxygen-added β-Ti alloys. Acta Mater. 59, 6208–6218 (2011).
Xiong, C. et al. Superelasticity over a wide temperature range in metastable β-Ti shape memory alloys. J. Alloy. Comp. 853, 157090 (2021).
Raabe, D. The materials science behind sustainable metals and alloys. Chem. Rev. 123, 2436–2608 (2023).
Ohhara, T. et al. SENJU: a new time-of-flight single-crystal neutron diffractometer at J-PARC. J. Appl. Crystallogr. 49, 120–127 (2016).
Ohhara, T. et al. Development of data processing software for a new TOF single crystal neutron diffractometer at J-PARC. Nucl. Instrum. Methods Phys. Res. A 600, 195–197 (2009).
Stoklasová, P. et al. Laser-ultrasonic characterization of strongly anisotropic materials by transient grating spectroscopy. Exp. Mech. 61, 663–676 (2021).