Nature General A lightweight shape-memory alloy with superior temperature-fluctuation resistance

A lightweight shape-memory alloy with superior temperature-fluctuation resistance

A lightweight shape-memory alloy with superior temperature-fluctuation resistance post thumbnail image


  • Mouritz, A. P. Introduction to Aerospace Materials (Elsevier, 2012).

  • Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).

    Article 

    Google Scholar
     

  • Otsuka, K. & Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater Sci. 50, 511–678 (2005).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ogawa, Y., Ando, D., Sutou, Y. & Koike, J. A lightweight shape-memory magnesium alloy. Science 353, 368–370 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xia, J. et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 369, 855–858 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Niitsu, K., Kimura, Y., Omori, T. & Kainuma, R. Cryogenic superelasticity with large elastocaloric effect. NPG Asia Mater. 10, 457–457 (2018).

    Article 

    Google Scholar
     

  • Landau, L. D., Pitaevskii, L. P., Kosevich, A. M. & Lifshitz, E. M. Theory of Elasticity Vol. 7 (Elsevier, 2012).

  • Hao, S. et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339, 1191–1194 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Otsuka, K., Sakamoto, H. & Shimizu, K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys. Acta Metall. 27, 585–601 (1979).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Biesiekierski, A., Wang, J., Gepreel, M. A. H. & Wen, C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 8, 1661–1669 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Why go to Space? NASA www.nasa.gov/humans-in-space/why-go-to-space/ (2024).

  • Starship: service to Earth orbit, Moon, Mars and beyond. SPACE-X www.spacex.com/vehicles/starship (2024).

  • Züttel, A. Materials for hydrogen storage. Mater. Today 6, 24–33 (2003).

    Article 

    Google Scholar
     

  • Kim, H. Y., Ikehara, Y., Kim, J. I., Hosoda, H. & Miyazaki, S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 54, 2419–2429 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fu, J., Yamamoto, A., Kim, H. Y., Hosoda, H. & Miyazaki, S. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 17, 56–67 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, D. & Williams, J. C. Perspectives on titanium science and technology. Acta Mater. 61, 844–879 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ohnuma, I. et al. Phase equilibria in the Ti–Al binary system. Acta Mater. 48, 3113–3123 (2000).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kainuma, R. et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Omori, T. et al. Superelastic effect in polycrystalline ferrous alloys. Science 333, 68–71 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kainuma, R., Ohnuma, I., Ishikawa, K. & Ishida, K. Stability of B2 ordered phase in the Ti-rich portion of Ti-Al-Cr and Ti-Al-Fe ternary systems. Intermetallics 8, 2–8 (2000).

    Article 
    MATH 

    Google Scholar
     

  • Neelakantan, S., Rivera-Díaz-del-Castillo, P. E. J. & van der Zwaag, S. Prediction of the martensite start temperature for β titanium alloys as a function of composition. Scr. Mater. 60, 611–614 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Al-Zain, Y., Kim, H. Y., Hosoda, H., Nam, T. H. & Miyazaki, S. Shape memory properties of Ti-Nb-Mo biomedical alloys. Acta Mater. 58, 4212–4223 (2010).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Yamagishi, K., Ogawa, Y., Ando, D., Sutou, Y. & Koike, J. Room temperature superelasticity in a lightweight shape memory Mg alloy. Scr. Mater. 168, 114–118 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yamaguchi, M. & Umakoshi, Y. The deformation behaviour of intermetallic superlattice compounds. Prog. Mater Sci. 34, 1–148 (1990).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Nam, T. H., Saburi, T. & Shimizu, K. Cu-content depedence of shape memory characteristics in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 959–967 (1990).

  • Pustovalov, V. V. Serrated deformation of metals and alloys at low temperatures. Low Temp. Phys. 34, 683–723 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Odaira, T., Xu, S., Xu, X., Omori, T. & Kainuma, R. Elastocaloric switching effect induced by reentrant martensitic transformation. Appl. Phys. Rev. 7, 3 (2020).

    Article 

    Google Scholar
     

  • Wollants, P., DeBonte, M. & Roos, J. R. A thermodynamic analysis of the stress-induced martensitic transformation in a single crystal. Z. Metall. 70, 113–117 (1979).

    MATH 

    Google Scholar
     

  • Clapp, P. C. A localized soft mode theory for martensitic transformations. Phys. Status Solidi B 57, 561–569 (1973).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Olson, G. B. & Cohen, M. A perspective on martensitic nucleation. Annu. Rev. Mater. Sci. 11, 1–32 (1981).

  • Nagasawa, A., Makita, T. & Takagi, Y. Anharmonicity and martensitic phase transition in β-phase alloys. J. Phys. Soc. Japan 51, 3876–3881 (1982).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Nakanishi, N. Elastic constants as they relate to lattice properties and martensite formation. Prog. Mater Sci. 24, 143–265 (1980).

    Article 
    MATH 

    Google Scholar
     

  • Ren, X. & Otsuka, K. The role of softening in elastic constant C44 in martensitic transformation. Scr. Mater. 38, 1669–1675 (1998).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Tane, M. et al. Low Young’s modulus in Ti-Nb-Ta-Zr-O alloys: cold working and oxygen effects. Acta Mater. 59, 6975–6988 (2011).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Darling, T. W. et al. Elastic and thermodynamic properties of the shape-memory alloy AuZn. Philos. Mag. B 82, 825–837 (2002).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Zener, C. M. Elasticity and Anelasticity of Metals (Univ. Chicago Press, 1948).

  • Walker, E. & Peter, M. Elastic constants of the BCC phase in niobium‐zirconium alloys between 4.2 and 300 K. J. Appl. Phys. 48, 2820–2826 (1977).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, H. L. et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy. Acta Mater. 135, 330–339 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Al-Zain, Y. et al. Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys. Acta Mater. 59, 1464–1473 (2011).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kobayashi, H. & Hiki, Y. Anharmonicity in noble metals: nonlinear elasticity in whiskers. Phys. Rev. B 17, 594 (1973).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chen, L. Y., Richter, G., Sullivan, J. P. & Gianola, D. S. Lattice anharmonicity in defect-free Pd nanowhiskers. Phys. Rev. Lett. 109, 125503 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xu, S. et al. Non-Hookean large elastic deformation in bulk crystalline metals. Nat. Commu. 13, 5307 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Smith, M. et al. The Artemis program: an overview of NASA’s activities to return humans to the moon. In 2020 IEEE Aerospace Conference, 1–10 (IEEE, 2020).

  • Padula II, S. Utilizing Shape Memory Alloys for Novel, Non-pneumatic Tire Design – Designing for the Best of Both Worlds Case Western Reserve Univ. Colloquium Series, GRC-E-DAA-TN67368 (NASA, 2019).

  • Xu, S. et al. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71. 5Al17. 5Mn11 shape memory alloy. APL Mater. 4, 106106 (2016).

  • Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tahara, M., Kim, H. Y., Inamura, T., Hosoda, H. & Miyazaki, S. Lattice modulation and superelasticity in oxygen-added β-Ti alloys. Acta Mater. 59, 6208–6218 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiong, C. et al. Superelasticity over a wide temperature range in metastable β-Ti shape memory alloys. J. Alloy. Comp. 853, 157090 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Raabe, D. The materials science behind sustainable metals and alloys. Chem. Rev. 123, 2436–2608 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ohhara, T. et al. SENJU: a new time-of-flight single-crystal neutron diffractometer at J-PARC. J. Appl. Crystallogr. 49, 120–127 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohhara, T. et al. Development of data processing software for a new TOF single crystal neutron diffractometer at J-PARC. Nucl. Instrum. Methods Phys. Res. A 600, 195–197 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stoklasová, P. et al. Laser-ultrasonic characterization of strongly anisotropic materials by transient grating spectroscopy. Exp. Mech. 61, 663–676 (2021).

    Article 
    MATH 

    Google Scholar
     


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post