Nature General Systematic bone tool production at 1.5 million years ago

Systematic bone tool production at 1.5 million years ago

Systematic bone tool production at 1.5 million years ago post thumbnail image


  • Harmand, S. et al. 3.3-Million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Proffitt, T. et al. Wild monkeys flake stone tools. Nature 539, 85–88 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Backwell, L. & d’Errico, F. Evidence of termite foraging by Swartkrans early hominids. Proc. Natl Acad. Sci. USA 98, 1358–1363 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Backwell, L. R. & d’Errico, F. The first use of bone tools: a reappraisal of the evidence from Olduvai Gorge, Tanzania. Palaeontol. Afr. 40, 95–158 (2004).


    Google Scholar
     

  • Villa, P. et al. Elephant bones for the Middle Pleistocene toolmaker. PLoS ONE 16, e0256090 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santucci, E. et al. Palaeoloxodon exploitation at the Middle Pleistocene site of La Polledrara di Cecanibbio (Rome, Italy). Quat. Int. 406, 169–182 (2016).

    Article 

    Google Scholar
     

  • Thompson, J. C., Carvalho, S., Marean, C. W. & Alemseged, Z. Origins of the human predatory pattern: the transition to large-animal exploitation by early hominins. Curr. Anthropol. 60, 1–23 (2019).

    Article 

    Google Scholar
     

  • Plummer, T. W. et al. Expanded geographic distribution and dietary strategies of the earliest Oldowan hominins and Paranthropus. Science 379, 561–566 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doyon, L., Li, Z., Wang, H., Geis, L. & d’Errico, F. A 115,000-year-old expedient bone technology at Lingjing, Henan, China. PLoS ONE 16, e0250156 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brain, C. K. in Bone Modification (eds. Bonnichsen, R. & Sorg, M. H.) 291–297 (Center for the Study of the First Americans, Institute for Quaternary Studies, Univ. Maine, 1989).

  • Backwell, L. R. & d’Errico, F. Additional evidence of early hominid bone tools from South Africa. First attempt at exploring inter-site variability. Palaeontol. Afr. 44, 91–94 (2009).


    Google Scholar
     

  • Hanon, R. et al. New evidence of bone tool use by Early Pleistocene hominins from Cooper’s D, Bloubank Valley, South Africa. J. Archaeol. Sci. Rep. 39, 103129 (2021).


    Google Scholar
     

  • Stammers, R. C., Caruana, M. V. & Herries, A. I. R. The first bone tools from Kromdraai and stone tools from Drimolen, and the place of bone tools in the South African Earlier Stone Age. Quat. Int. 495, 87–101 (2018).

    Article 

    Google Scholar
     

  • Leakey, M. D. Olduvai Gorge: Excavations in Beds I and II, 1960–1963 Vol. 3 (Cambridge Univ. Press, 1971).

  • Shipman, P. in Bone Modification (eds. Bonnichsen, R. & Sorg, M. H.) 317–334 (Center for the Study of the First Americans, Institute for Quaternary Studies, Univ. Maine, 1989).

  • Pante, M., de la Torre, I., d’Errico, F., Njau, J. & Blumenschine, R. Bone tools from Beds II–IV, Olduvai Gorge, Tanzania, and implications for the origins and evolution of bone technology. J. Hum. Evol. 148, 102885 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sano, K. et al. A 1.4-million-year-old bone handaxe from Konso, Ethiopia, shows advanced tool technology in the early Acheulean. Proc. Natl Acad. Sci. USA 117, 18393–18400 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabinovich, R. et al. Elephants at the Middle Pleistocene Acheulian open-air site of Revadim Quarry, Israel. Quat. Int. 276–277, 183–197 (2012).

    Article 

    Google Scholar
     

  • Kretzoi, M. & Dobosi, V. T. Vértesszőlős: Site, Man and Culture (Akadémiai Kiadó, 1990).

  • Mania, D. & Vlček, E. Homo erectus from Bilzingsleben (GDR) — his culture and his environment. Anthropologie (Brno) 25, 1–45 (1987).


    Google Scholar
     

  • Wei, G. et al. First discovery of a bone handaxe in China. Quat. Int. 434, 121–128 (2017).

    Article 

    Google Scholar
     

  • Rosell, J. et al. Bone as a technological raw material at the Gran Dolina site (Sierra de Atapuerca, Burgos, Spain). J. Hum. Evol. 61, 125–131 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Julien, M.-A. et al. Characterizing the Lower Paleolithic bone industry from Schöningen 12 II: a multi-proxy study. J. Hum. Evol. 89, 264–286 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • van Kolfschoten, T., Parfitt, S. A., Serangeli, J. & Bello, S. M. Lower Paleolithic bone tools from the ‘Spear Horizon’ at Schöningen (Germany). J. Hum. Evol. 89, 226–263 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, S. & Doyon, L. Animals for tools: the origin and development of bone technologies in China. Front. Earth Sci. 9, 1138 (2021).

    Article 

    Google Scholar
     

  • d’Errico, F. & Henshilwood, C. S. Additional evidence for bone technology in the southern African Middle Stone Age. J. Hum. Evol. 52, 142–163 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bouzouggar, A. et al. 90,000 Year-old specialised bone technology in the Aterian Middle Stone Age of North Africa. PLoS ONE 13, e0202021 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yellen, J. E., Brooks, A. S., Cornelissen, E., Mehlman, M. J. & Stewart, K. A Middle Stone Age worked bone industry from Katanda, Upper Semliki Valley, Zaire. Science 268, 553–556 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • d’Errico, F. et al. Technological and functional analysis of 80–60 ka bone wedges from Sibudu (KwaZulu-Natal, South Africa). Sci. Rep. 12, 16270 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arrighi, S. et al. Bone tools, ornaments and other unusual objects during the Middle to Upper Palaeolithic transition in Italy. Quat. Int. 551, 169–187 (2020).

    Article 

    Google Scholar
     

  • d’Errico, F., Borgia, V. & Ronchitelli, A. Uluzzian bone technology and its implications for the origin of behavioural modernity. Quat. Int. 259, 59–71 (2012).

    Article 

    Google Scholar
     

  • Langley, M. C. et al. Bows and arrows and complex symbolic displays 48,000 years ago in the South Asian tropics. Sci. Adv. 6, eaba3831 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Ma’anshan cave and the origin of bone tool technology in China. J. Archaeolog. Sci. 65, 57–69 (2016).

    Article 

    Google Scholar
     

  • d’Errico, F. et al. The origin and evolution of sewing technologies in Eurasia and North America. J. Hum. Evol. 125, 71–86 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fujioka, T. et al. Direct cosmogenic nuclide isochron burial dating of early Acheulian stone tools at the T69 Complex (FLK West, Olduvai Bed II, Tanzania). J. Hum. Evol. 165, 103155 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Villa, P. & Bartram, L. Flaked bone from a hyena den. Paléo 8, 143–159 (1996).

    Article 

    Google Scholar
     

  • Villa, P. et al. The archaeology and paleoenvironment of an Upper Pleistocene hyena den: an integrated approach. J. Archaeolog. Sci. 37, 919–935 (2010).

    Article 

    Google Scholar
     

  • Burke, A. & d’Errico, F. A Middle Palaeolithic bone tool from Crimea (Ukraine). Antiquity 82, 843–852 (2008).

    Article 

    Google Scholar
     

  • Tartar, É. The recognition of a new type of bone tools in Early Aurignacian assemblages: implications for understanding the appearance of osseous technology in Europe. J. Archaeol. Sci. 39, 2348–2360 (2012).

    Article 

    Google Scholar
     

  • Kozlikin, M. B., Rendu, W., Plisson, H., Baumann, M. & Shunkov, M. V. Unshaped bone tools from Denisova Cave, Altai. Archaeol. Ethnol. Anthropol. Eurasia 48, 16–28 (2020).

    Article 

    Google Scholar
     

  • Fisher, D. C. Taphonomic analysis of late Pleistocene mastodon occurrences: evidence of butchery by North American Paleo-Indians. Paleobiology 10, 338–357 (1984).

    Article 

    Google Scholar
     

  • Anzidei, A. P. et al. Ongoing research at the late Middle Pleistocene site of La Polledrara di Cecanibbio (central Italy), with emphasis on human–elephant relationships. Quat. Int. 255, 171–187 (2012).

    Article 

    Google Scholar
     

  • de la Torre, I. The origins of the Acheulean: past and present perspectives on a major transition in human evolution. Phil. Trans. R. Soc. B 371, 20150245 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suwa, G., Asfaw, B., Sano, K. & Beyene, Y. Reply to Barkai: implications of the Konso bone handaxe. Proc. Natl Acad. Sci. USA 117, 30894–30895 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Presnyakova, D. et al. Site fragmentation, hominin mobility and LCT variability reflected in the early Acheulean record of the Okote Member, at Koobi Fora, Kenya. J. Hum. Evol. 125, 159–180 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • de la Torre, I. & Mora, R. The Transition to the Acheulean in East Africa: an assessment of paradigms and evidence from Olduvai Gorge (Tanzania). J. Archaeol. Method Theory 21, 781–823 (2014).

    Article 

    Google Scholar
     

  • Beyene, Y. et al. The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. Proc. Natl Acad. Sci. USA 110, 1584–1591 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deino, A. L. 40Ar/39Ar dating of Bed I, Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change. J. Hum. Evol. 63, 251–273 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Deino, A. L. et al. Chronostratigraphy and age modeling of Pleistocene drill cores from the Olduvai Basin, Tanzania (Olduvai Gorge Coring Project). Palaeogeogr. Palaeoclimatol. Palaeoecol. 571, 109990 (2021).

    Article 

    Google Scholar
     

  • Hay, R. L. Geology of the Olduvai Gorge (Univ. California Press, 1976).

  • Uribelarrea, D. et al. A reconstruction of the paleolandscape during the earliest Acheulian of FLK West: the co-existence of Oldowan and Acheulian industries during lowermost Bed II (Olduvai Gorge, Tanzania). Palaeogeogr. Palaeoclimatol. Palaeoecol. 488, 50–58 (2017).

    Article 

    Google Scholar
     

  • Diez-Martín, F. et al. The origin of the Acheulean: the 1.7 million-year-old site of FLK West, Olduvai Gorge (Tanzania). Sci. Rep. 5, 17839 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domínguez-Rodrigo, M. et al. First partial skeleton of a 1.34-million-year-old Paranthropus boisei from Bed II, Olduvai Gorge, Tanzania. PLoS ONE 8, e80347 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Torre, I., Arroyo, A., Proffitt, T., Martín Ramos, C. & Theodoropoulou, A. Archaeological fieldwork techniques in Stone Age sites: some case studies. Treballs d’Arqueol. 20, 21–40 (2014).

    Article 

    Google Scholar
     

  • Benito-Calvo, A., Martínez-Moreno, J., Jordá Pardo, J. F., de la Torre, I. & Mora Torcal, R. Sedimentological and archaeological fabrics in Palaeolithic levels of the south-eastern Pyrenees: Cova Gran and Roca dels Bous sites (Lleida, Spain). J. Archael. Sci. 36, 2566–2577 (2009).

    Article 

    Google Scholar
     

  • Pante, M. C. et al. The carnivorous feeding behavior of early Homo at HWK EE, Bed II, Olduvai Gorge, Tanzania. J. Hum. Evol. 120, 215–235 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ebdon, D. Statistics in Geography 2nd edn (Blackwell, 1985).

  • Fisher, N. I. Statistical Analysis of Circular Data (Cambridge Univ. Press, 1995).

  • de la Torre, I. & Benito-Calvo, A. Application of GIS methods to retrieve orientation patterns from imagery: a case study from Beds I and II, Olduvai Gorge (Tanzania). J. Archael. Sci. 40, 2446–2457 (2013).

    Article 

    Google Scholar
     

  • Bertran, P., Hétu, B., Texier, J.-P. & van Steijn, H. Fabric characteristics of subaerial slope deposits. Sedimentology 44, 1–16 (1997).

    Article 

    Google Scholar
     

  • Binford, L. R. Nunamiut Ethnoarchaeology: a Case Study in Archaeological Formation Processes (Academic Press, 1978).

  • Marean, C. W. & Kim, S. Y. Mousterian large-mammals from Kobeh Cave. Curr. Anthropol. 39, 79–113 (1998).

    Article 

    Google Scholar
     

  • Bunn, H. T. Meat-eating and Human Evolution: Studies on the Diet and Subsistence Patterns of Plio-Pleistocene Hominids in East Africa (Univ. California, Berkeley, 1982).

  • Coe, M. The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. J. Arid. Environ. 1, 71–86 (1978).

    Article 

    Google Scholar
     

  • Haynes, G. Frequencies of spiral and green-bone fractures on ungulate limb bones in modern surface assemblages. Am. Antiq. 48, 102–114 (1983).

    Article 

    Google Scholar
     

  • Haynes, G. Longitudinal studies of African elephant death and bone deposits. J. Archaeol. Sci. 15, 131–157 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Karr, L. P. & Outram, A. K. Bone degradation and environment: understanding, assessing and conducting archaeological experiments using modern animal bones. Int. J. Osteoarchaeol. 25, 201–212 (2015).

    Article 

    Google Scholar
     

  • Pokines, J. T. et al. The effects of repeated wet–dry cycles as a component of bone weathering. J. Archaeol. Sci. Rep. 17, 433–441 (2018).


    Google Scholar
     

  • Haynes, G., Krasinski, K. & Wojtal, P. Elephant bone breakage and surface marks made by trampling elephants: implications for interpretations of marked and broken Mammuthus spp. bones. J. Archaeol. Sci. Rep. 33, 102491 (2020).


    Google Scholar
     

  • Haynes, G., Krasinski, K. & Wojtal, P. A study of fractured Proboscidean bones in recent and fossil assemblages. J. Archaeol. Method Theory 28, 956–1025 (2021).

    Article 

    Google Scholar
     

  • Haynes, G. & Wojtal, P. Weathering stages of Proboscidean bones: relevance for zooarchaeological analysis. J. Archaeol. Method Theory 30, 495–535 (2023).

    Article 

    Google Scholar
     

  • Bibi, F. et al. Paleoecology of the Serengeti during the Oldowan–Acheulean transition at Olduvai Gorge, Tanzania: the mammal and fish evidence. J. Hum. Evol. 120, 48–75 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Uno, K. T. et al. Large mammal diets and paleoecology across the Oldowan–Acheulean transition at Olduvai Gorge, Tanzania from stable isotope and tooth wear analyses. J. Hum. Evol. 120, 76–91 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162 (1978).

    Article 

    Google Scholar
     

  • Haynes, G. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9, 164–172 (1983).

    Article 

    Google Scholar
     

  • Haynes, G. Mammoths, Mastodonts, and Elephants: Biology, Behavior and the Fossil Record (Cambridge Univ. Press, 1991).

  • Shipman, P., Fisher, D. C. & Rose, J. J. Mastodon butchery: microscopic evidence of carcass processing and bone tool use. Paleobiology 10, 358–365 (1984).

    Article 

    Google Scholar
     

  • Noe-Nygaard, N. Taphonomy in archaeology with special emphasis on man as a biasing factor. J. Danish Archaeol. 6, 7–62 (1987).

    Article 

    Google Scholar
     

  • Noe-Nygaard, N. Man-made trace fossils on bones. Hum. Evol. 4, 461–491 (1989).

    Article 

    Google Scholar
     

  • Lyman, R. L. Vertebrate Taphonomy (Cambridge Univ. Press, 1994).

  • Fisher, J. W. Jr Bone surface modifications in zooarchaeology. J. Archaeol. Method Theory 2, 7–68 (1995).

    Article 

    Google Scholar
     

  • Hutson, J. M., Burke, C. C. & Haynes, G. Osteophagia and bone modifications by giraffe and other large ungulates. J. Archaeolog. Sci. 40, 4139–4149 (2013).

    Article 

    Google Scholar
     

  • Fernández-Jalvo, Y. & Andrews, P. Atlas of Taphonomic Identifications (Springer Dordrecht, 2016).

  • Wadley, L. A camera trap record of scavengers at a kudu carcass: implications for archaeological bone accumulations. Trans. R. Soc. South Africa 75, 245–257 (2020).

    Article 

    Google Scholar
     

  • Backwell, L., Huchet, J.-B., du Guesclin Harrison, J. & d’Errico, F. in Manual of Forensic Taphonomy (eds. Pokines, J. T. & Symes, S. A.) 631–666 (CRC Press, 2021).

  • Behrensmeyer, A. K., Gordon, K. D. & Yanagi, G. T. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319, 768–771 (1986).

    Article 

    Google Scholar
     

  • Olsen, S. L. & Shipman, P. Surface modification on bone: trampling versus butchery. J. Archaeol. Sci. 15, 535–553 (1988).

    Article 

    Google Scholar
     

  • Blasco, R., Rosell, J., Fernández Peris, J., Cáceres, I. & Vergès, J. M. A new element of trampling: an experimental application on the level XII faunal record of Bolomor Cave (Valencia, Spain). J. Archaeol. Sci. 35, 1605–1618 (2008).

    Article 

    Google Scholar
     

  • Cruz-Uribe, K. Distinguishing hyena from hominid bone accumulations. J. Field Archaeol. 18, 467–486 (1991).

    Article 

    Google Scholar
     

  • Brugal, J.-P. & Fourvel, J.-B. Puncture game: let’s play with the canines of carnivores. Quat. Sci. Adv. 13, 100129 (2024).

    Article 

    Google Scholar
     

  • Vincent, A. L’outillage Osseux au Paléolithique Moyen: une Nouvelle Approche (Université de Paris X, 1993).

  • Madrigal, T. C. & Blumenschine, R. J. Preferential processing of high return rate marrow bones by Oldowan hominids: a comment on Lupo. J. Archaeol. Sci. 27, 739–741 (2000).

    Article 

    Google Scholar
     

  • Outram, A. K. A new approach to identifying bone marrow and grease exploitation: why the “indeterminate” fragments should not be ignored. J. Archaeol. Sci. 28, 401–410 (2001).

    Article 

    Google Scholar
     

  • Blasco, R., Domínguez‐Rodrigo, M., Arilla, M., Camarós, E. & Rosell, J. Breaking bones to obtain marrow: a comparative study between percussion by batting bone on an anvil and hammerstone percussion. Archaeometry 56, 1085–1104 (2014).

    Article 

    Google Scholar
     

  • Vettese, D. et al. Towards an understanding of hominin marrow extraction strategies: a proposal for a percussion mark terminology. Archaeol. Anthropol. Sci. 12, 48 (2020).

    Article 

    Google Scholar
     

  • Inizan, M.-L., Reduron, M., Roche, H. & Tixier, J. Préhistoire de La Pierre Taillée: Technologie de La Pierre Taillée, Suivi Par Un Dictionnaire Multilingue Allemand, Anglais, Arabe, Espagnol, Français, Grec, Italien, Portugais Vol. 4 (C.R.E.P., 1995).

  • R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org (R Foundation for Statistical Computing, 2021).

  • Jorayev, G., Wehr, K., Benito-Calvo, A., Njau, J. & de la Torre, I. Imaging and photogrammetry models of Olduvai Gorge (Tanzania) by unmanned aerial vehicles: a high-resolution digital database for research and conservation of Early Stone Age sites. J. Archaeol. Sci. 75, 40–56 (2016).

    Article 

    Google Scholar
     

  • Vollmer, F. W. A triangular fabric plot with applications for structural analysis. Am. Geophys. Union Trans. 70, 463 (1989).


    Google Scholar
     

  • Benn, D. Fabric shape and the interpretation of sedimentary fabric data. J. Sediment. Res. 64, 910–915 (1994).


    Google Scholar
     

  • de la Torre, I. & Mora, R. Technological behaviour in the early Acheulean of EF-HR (Olduvai Gorge, Tanzania). J. Hum. Evol. 120, 329–377 (2018).

    Article 
    PubMed 

    Google Scholar
     


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post