Huang, B. et al. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2021).
Schmidt, G. Climate models can’t explain 2023’s huge heat anomaly—we could be in uncharted territory. Nature 627, 467–467 (2024).
Copernicus: 2023 is the hottest year on record, with global temperatures close to the 1.5°C limit. ECMWF https://climate.copernicus.eu/copernicus-2023-hottest-year-record (2024).
Poynting, M. & Rivault, E. 2023 confirmed as world’s hottest year on record. BBC News https://www.bbc.com/news/science-environment-67861954 (2024).
Samset, B. H., Lund, M. T., Fuglestvedt, J. S. & Wilcox, L. J. 2023 temperatures reflect steady global warming and internal sea surface temperature variability. Commun. Earth Environ. 5, 460 (2024).
Raghuraman, S. P. et al. The 2023 global warming spike was driven by the El Niño–Southern Oscillation. Atmos. Chem. Phys. 24, 11275–11283 (2024).
Esper, J., Torbenson, M. & Büntgen, U. 2023 summer warmth unparalleled over the past 2,000 years. Nature 631, 94–97 (2024).
Cattiaux, J., Ribes, A. & Cariou, E. How extreme were daily global temperatures in 2023 and early 2024? Geophys. Res. Lett. 51, e2024GL110531 (2024).
Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161–163 (2014).
Sillmann, J., Donat, M. G., Fyfe, J. C. & Zwiers, F. W. Observed and simulated temperature extremes during the recent warming hiatus. Environ. Res. Lett. 9, 064023 (2014).
Kuhlbrodt, T., Swaminathan, R., Ceppi, P. & Wilder, T. A glimpse into the future: the 2023 ocean temperature and sea ice extremes in the context of longer-term climate change. Bull. Am. Meteorol. Soc. 105, E474–E485 (2024).
Min, S.-K. Human influence can explain the widespread exceptional warmth in 2023. Commun. Earth Environ. 5, 215 (2024).
McGrath, M., Poynting, M. & Rowlatt, J. Climate change: world’s oceans suffer from record-breaking year of heat. BBC News https://www.bbc.com/news/science-environment-68921215 (2024).
Erdenesanaa, D. Ocean heat has shattered records for more than a year. What’s happening? The New York Times https://www.nytimes.com/2024/04/10/climate/ocean-heat-records.html (2024).
Goessling, H. F., Rackow, T. & Jung, T. Recent global temperature surge intensified by record-low planetary albedo. Science 387, 68–73 (2025).
Capotondi, A. et al. A global overview of marine heatwaves in a changing climate. Commun. Earth Environ. 5, 701 (2024).
Li, C., Burger, F. A., Raible, C. C. & Frölicher, T. L. Observed regional impacts of marine heatwaves on sea–air CO2 exchange. Geophys. Res. Lett. 51, e2024GL110379 (2024).
Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).
Saranya, J. S., Roxy, M. K., Dasgupta, P. & Anand, A. Genesis and trends in marine heatwaves over the tropical Indian Ocean and their interaction with the Indian summer monsoon. J. Geophys. Res. Ocean. 127, e2021JC017427 (2022).
Singh, V. K., Roxy, M. K. & Deshpande, M. Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe cyclone Fani. Sci. Rep. 11, 3607 (2021).
Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).
Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).
Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).
Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 7, eabh0895 (2021).
Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).
IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).
Huang, B. et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information https://doi.org/10.7289/V5T72FNM (2017).
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).
Berthou, S. et al. Exceptional atmospheric conditions in June 2023 generated a northwest European marine heatwave which contributed to breaking land temperature records. Commun. Earth Environ. 5, 287 (2024).
Yuan, T. et al. Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming. Commun. Earth Environ. 5, 281 (2024).
Tokarska Katarzyna, B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2021).
Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).
Deser, C., Alexander, M. A., Xie, S.-P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2009).
Christian, J. R. et al. Ocean biogeochemistry in the Canadian Earth System Model version 5.0.3: CanESM5 and CanESM5-CanOE. Geosci. Model Dev. 15, 4393–4424 (2022).
Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).
Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
Burger, F. A., Terhaar, J. & Frölicher, T. L. Compound marine heatwaves and ocean acidity extremes. Nat. Commun. 13, 4722 (2022).
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).
Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).
Huang, B. et al. Understanding differences in sea surface temperature intercomparisons. J. Atmos. Ocean. Technol. 40, 455–473 (2023).
Embury, O. et al. Satellite-based time-series of sea-surface temperature since 1980 for climate applications. Sci. Data 11, 326 (2024).
Enting, I. G. On the use of smoothing splines to filter CO2 data. J. Geophys. Res. Atmos. 92, 10977–10984 (1987).
Minière, A., von Schuckmann, K. Sallée, J.-B. & Vogt, L. Robust acceleration of Earth system heating observed over the past six decades. Sci. Rep. 13, 22975 (2023).
Casella., G. & Berger, R. L. Statistical Inference (Duxbury, 2002).
Kenney, J. F. & Keeping, E. S. Mathematics of Statistics Part 2 2nd edn (Van Nostrand, 1951).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007).
RCP Database (IIASA, 2009).
SSP Database (IIASA, 2018).
Wilks, D. S. Statistical Methods in the Atmospheric Sciences (Elsevier, 2019); https://doi.org/10.1016/C2017-0-03921-6.
Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).
Terhaar, J. Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models. Biogeosciences 21, 3903–3926 (2024).
Fay, A. R. & McKinley, G. A. Global open-ocean biomes: mean and temporal variability. Earth Syst. Sci. Data 6, 273–284 (2014).
Terhaar, J., Vogt, L. & Burger, F. A. Code for the analysis about record-shattering jumps in sea surface temperatures. Zenodo https://doi.org/10.5281/zenodo.14618176 (2025).
Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).
Bi, D. et al. Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. 70, 225–251 (2020).
Ziehn, T. et al. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).
Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).
Zhang, H. et al. Description and climate simulation performance of CAS-ESM Version 2. J. Adv. Model. Earth Sys. 12, e2020MS002210 (2020).
Lin, Y. et al. Community Integrated Earth System Model (CIESM): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002036 (2020).
Cherchi, A. et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 11, 185–209 (2019).
Lovato, T. et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 14, e2021MS002814 (2022).
Voldoire, A. et al. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).
Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).
Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).
HE, B. et al. CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmos. Ocean. Sci. Lett. 13, 582–588 (2020).
Li, L. et al. The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002012 (2020).
Bao, Y., Song, Z. & Qiao, F. FIO-ESM Version 2.0: model description and evaluation. J. Geophys. Res. Ocean. 125, e2019JC016036 (2020).
Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).
Kelley, M. et al. GISS-E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).
Andrews, M. B. et al. Historical simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst. 12, e2019MS001995 (2020).
Volodin, E. M., Diansky, N. A. & Gusev, A. V. Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system. Izv. Atmos. Ocean. Phys. 49, 347–366 (2013).
Volodin, E. & Gritsun, A. Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth Syst. Dyn. 9, 1235–1242 (2018).
Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).
Gutjahr, O. et al. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).
Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).
Yukimoto, S. et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn Ser. II 97, 931–965 (2019).
Seland, Ø. et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).