Nature General Record sea surface temperature jump in 2023–2024 unlikely but not unexpected

Record sea surface temperature jump in 2023–2024 unlikely but not unexpected

Record sea surface temperature jump in 2023–2024 unlikely but not unexpected post thumbnail image


  • Huang, B. et al. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Schmidt, G. Climate models can’t explain 2023’s huge heat anomaly—we could be in uncharted territory. Nature 627, 467–467 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Copernicus: 2023 is the hottest year on record, with global temperatures close to the 1.5°C limit. ECMWF https://climate.copernicus.eu/copernicus-2023-hottest-year-record (2024).

  • Poynting, M. & Rivault, E. 2023 confirmed as world’s hottest year on record. BBC News https://www.bbc.com/news/science-environment-67861954 (2024).

  • Samset, B. H., Lund, M. T., Fuglestvedt, J. S. & Wilcox, L. J. 2023 temperatures reflect steady global warming and internal sea surface temperature variability. Commun. Earth Environ. 5, 460 (2024).

    Article 

    Google Scholar
     

  • Raghuraman, S. P. et al. The 2023 global warming spike was driven by the El Niño–Southern Oscillation. Atmos. Chem. Phys. 24, 11275–11283 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Esper, J., Torbenson, M. & Büntgen, U. 2023 summer warmth unparalleled over the past 2,000 years. Nature 631, 94–97 (2024).

  • Cattiaux, J., Ribes, A. & Cariou, E. How extreme were daily global temperatures in 2023 and early 2024? Geophys. Res. Lett. 51, e2024GL110531 (2024).

    Article 

    Google Scholar
     

  • Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161–163 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sillmann, J., Donat, M. G., Fyfe, J. C. & Zwiers, F. W. Observed and simulated temperature extremes during the recent warming hiatus. Environ. Res. Lett. 9, 064023 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kuhlbrodt, T., Swaminathan, R., Ceppi, P. & Wilder, T. A glimpse into the future: the 2023 ocean temperature and sea ice extremes in the context of longer-term climate change. Bull. Am. Meteorol. Soc. 105, E474–E485 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Min, S.-K. Human influence can explain the widespread exceptional warmth in 2023. Commun. Earth Environ. 5, 215 (2024).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • McGrath, M., Poynting, M. & Rowlatt, J. Climate change: world’s oceans suffer from record-breaking year of heat. BBC News https://www.bbc.com/news/science-environment-68921215 (2024).

  • Erdenesanaa, D. Ocean heat has shattered records for more than a year. What’s happening? The New York Times https://www.nytimes.com/2024/04/10/climate/ocean-heat-records.html (2024).

  • Goessling, H. F., Rackow, T. & Jung, T. Recent global temperature surge intensified by record-low planetary albedo. Science 387, 68–73 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capotondi, A. et al. A global overview of marine heatwaves in a changing climate. Commun. Earth Environ. 5, 701 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Li, C., Burger, F. A., Raible, C. C. & Frölicher, T. L. Observed regional impacts of marine heatwaves on sea–air CO2 exchange. Geophys. Res. Lett. 51, e2024GL110379 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Saranya, J. S., Roxy, M. K., Dasgupta, P. & Anand, A. Genesis and trends in marine heatwaves over the tropical Indian Ocean and their interaction with the Indian summer monsoon. J. Geophys. Res. Ocean. 127, e2021JC017427 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Singh, V. K., Roxy, M. K. & Deshpande, M. Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe cyclone Fani. Sci. Rep. 11, 3607 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).

  • Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 7, eabh0895 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

  • Huang, B. et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information https://doi.org/10.7289/V5T72FNM (2017).

  • Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthou, S. et al. Exceptional atmospheric conditions in June 2023 generated a northwest European marine heatwave which contributed to breaking land temperature records. Commun. Earth Environ. 5, 287 (2024).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Yuan, T. et al. Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming. Commun. Earth Environ. 5, 281 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tokarska Katarzyna, B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Deser, C., Alexander, M. A., Xie, S.-P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Christian, J. R. et al. Ocean biogeochemistry in the Canadian Earth System Model version 5.0.3: CanESM5 and CanESM5-CanOE. Geosci. Model Dev. 15, 4393–4424 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Burger, F. A., Terhaar, J. & Frölicher, T. L. Compound marine heatwaves and ocean acidity extremes. Nat. Commun. 13, 4722 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

  • Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Huang, B. et al. Understanding differences in sea surface temperature intercomparisons. J. Atmos. Ocean. Technol. 40, 455–473 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Embury, O. et al. Satellite-based time-series of sea-surface temperature since 1980 for climate applications. Sci. Data 11, 326 (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Enting, I. G. On the use of smoothing splines to filter CO2 data. J. Geophys. Res. Atmos. 92, 10977–10984 (1987).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Minière, A., von Schuckmann, K. Sallée, J.-B. & Vogt, L. Robust acceleration of Earth system heating observed over the past six decades. Sci. Rep. 13, 22975 (2023).

  • Casella., G. & Berger, R. L. Statistical Inference (Duxbury, 2002).

  • Kenney, J. F. & Keeping, E. S. Mathematics of Statistics Part 2 2nd edn (Van Nostrand, 1951).

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007).

    Article 
    MATH 

    Google Scholar
     

  • RCP Database (IIASA, 2009).

  • SSP Database (IIASA, 2018).

  • Wilks, D. S. Statistical Methods in the Atmospheric Sciences (Elsevier, 2019); https://doi.org/10.1016/C2017-0-03921-6.

  • Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).

    Article 
    MATH 

    Google Scholar
     

  • Terhaar, J. Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models. Biogeosciences 21, 3903–3926 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Fay, A. R. & McKinley, G. A. Global open-ocean biomes: mean and temporal variability. Earth Syst. Sci. Data 6, 273–284 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Terhaar, J., Vogt, L. & Burger, F. A. Code for the analysis about record-shattering jumps in sea surface temperatures. Zenodo https://doi.org/10.5281/zenodo.14618176 (2025).

  • Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bi, D. et al. Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. 70, 225–251 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Ziehn, T. et al. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).

    Article 

    Google Scholar
     

  • Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zhang, H. et al. Description and climate simulation performance of CAS-ESM Version 2. J. Adv. Model. Earth Sys. 12, e2020MS002210 (2020).

  • Lin, Y. et al. Community Integrated Earth System Model (CIESM): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002036 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Cherchi, A. et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 11, 185–209 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lovato, T. et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 14, e2021MS002814 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Voldoire, A. et al. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • HE, B. et al. CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmos. Ocean. Sci. Lett. 13, 582–588 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Li, L. et al. The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002012 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bao, Y., Song, Z. & Qiao, F. FIO-ESM Version 2.0: model description and evaluation. J. Geophys. Res. Ocean. 125, e2019JC016036 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).

  • Kelley, M. et al. GISS-E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Andrews, M. B. et al. Historical simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst. 12, e2019MS001995 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Volodin, E. M., Diansky, N. A. & Gusev, A. V. Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system. Izv. Atmos. Ocean. Phys. 49, 347–366 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Volodin, E. & Gritsun, A. Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth Syst. Dyn. 9, 1235–1242 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Gutjahr, O. et al. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yukimoto, S. et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn Ser. II 97, 931–965 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Seland, Ø. et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     


  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Post